

TCP/IP Lean

Web Servers for Embedded Systems

Second Edition

Jeremy Bentham

CMP Books
Lawrence, Kansas 66046

CMP Books

CMP Media LLC

1601 West 23rd Street, Suite 200

Lawrence, Kansas 66046

USA

www.cmpbooks.com

Designations used by companies to distinguish their products are often claimed as trademarks. In
all instances where CMP Books is aware of a trademark claim, the product name appears in initial
capital letters, in all capital letters, or in accordance with the vendor’s capitalization preference.
Readers should contact the appropriate companies for more complete information on trademarks
and trademark registrations. All trademarks and registered trademarks in this book are the prop-
erty of their respective holders.

Copyright © 2002 by Jeremy Bentham, except where noted otherwise. Published by CMP Books,
CMP Media LLC. All rights reserved. Printed in the United States of America. No part of this pub-
lication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher; with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have been carefully
tested, but are not guaranteed for any particular purpose. The publisher does not offer any war-
ranties and does not guarantee the accuracy, adequacy, or completeness of any information herein
and is not responsible for any errors or omissions. The publisher assumes no liability for damages
resulting from the use of the information in this book or for any infringement of the intellectual
property rights of third parties that would result from the use of this information.

Acquisitions Editor: Robert Ward
Managing Editor: Michelle O’Neal
Editor: Rita Sooby
Layout production: Kris Peaslee
Cover art: Robert Ward
Cover design: Damien Castaneda

Distributed in the U.S. and Canada by:

Publishers Group West

1700 Fourth Street

Berkeley, California 94710

1-800-788-3123

www.pgw.com

ISBN: 1-57820-108-X

To Fred, Ilse, and Jane

v

Table of Contents

Preface. xi

The Lean Plan . xi
Embedded Systems .xii
The Hardware . xiii
The Network . xiii
The Operating System . xiv
The Development Environment . xiv
The Software . xv
Acknowledgments . xv

Chapter 1

Introduction . 1

The Lean Plan .1
Getting Started .2
Software Introduction .5
Network Hardware .5
Device Drivers .8
Configuration File Format .14
Process Timer .14
State Machines .17
Buffering .21
Coding Conventions. .29

vi

Table of Contents

Chapter 2

Introduction to Protocols: SCRATCHP31

Overview . 31
Protocol . 32
SCRATCHP Services . 34
Logical Connections . 36
Packet Format. 38
Addressing . 42
Protocol Identification . 43
Reception and Transmission. 46
Implementation. 49
Summary . 68

Chapter 3

Network Addressing and Debugging.71

Overview . 71
Internetworks . 71
IP Addresses . 74
Address Resolution. 75
ARP Scanner. 77
Using ARPSCAN for Network Debugging . 84
Ethernet 2 . 89
IEEE 802.3 Networks . 90
Summary . 93

Chapter 4

The Network Interface: IP and ICMP 95

Overview . 95
TCP/IP Stack. 95
Internet Control Message Protocol . 110
Ping Implementation. 112
Router Implementation. 122
Summary . 131

Chapter 5

User Datagram Protocol: UDP135

Overview . 135
Ports and Sockets . 135
Datagram Format . 138
UDP Checksum. 140
UDP Utility . 142
Summary . 152

Table of Contents

vii

Chapter 6

Transmission Control Protocol: TCP 155

Overview .155
TCP Concepts .156
TCP Implementation .169
TCP Application — Telnet .188
Telnet Implementation .190
Using Telnet .199
Conclusion .203

Chapter 7

Hypertext Transfer Protocol: HTTP 207

Overview .207
HTTP

GET

 Method. .207
Simple Web Server .211
Introducing HTML .217
State Machine Implementation .226
Summary .235

Chapter 8

Embedded Gateway Interface: EGI. 237

Overview .237
Interactive Displays .237
Standard CGI interface. .244
EGI Implementation .249
Summary .267

Chapter 9

Miniature Web Server Design 269

Overview .269
Microcontroller Software Development .270
Hardware .270
Development Environment .274
Software Techniques .275
Web Server Protocols .278
Summary .290

Chapter 10

TCP/IP on a PICmicro® Microcontroller. . 291

Overview .291
Peripherals .291
Block Diagram .294
Circuit Diagram .294
Low-Level Software .296

viii

Table of Contents

SLIP and IP Drivers. 303
ICMP . 319
TCP . 321
Summary . 329

Chapter 11

PWEB: Miniature Web Server for the

PICmicro® .331

Overview . 331
Web Server . 331
ROM File System . 336
Using the PWEB Server . 349
Dynamic Content . 351
Dynamic Web Pages . 355
Summary . 367

Chapter 12

ChipWeb — Miniature Ethernet Web

Server .369

Overview . 369
Hardware . 370
Ethernet Driver . 375
LCD Driver . 383
Other Drivers . 386
Protocols . 386
Protocol Debugging . 398
User Interface . 398
Configuration . 404
Conclusion . 409

Chapter 13

Point-to-Point Protocol: PPP 411

Overview . 411
Design of PPP . 412
Protocol Components . 415
Sample PPP Negotiation . 420
PPP Implementation . 426
Summary . 433

Table of Contents

ix

Chapter 14

UDP Clients, Servers, and Fast Data

Transfer . 435

Overview .435
Client–Server Networking .435
Peer-to-Peer Networking .437
Beyond the Web Server. .438
Buffer Enhancements .438
IP and ICMP Processing .445
UDP Servers .448
UDP Time Client .451
High-Speed Data Transfer .457
Hardware .458
Software .461
Summary .467

Chapter 15

Dynamic Host Configuration Protocol:

DHCP. 471

Overview .471
DHCP Methodology .472
Sample Transaction .477
DHCP Implementation. .481
Summary .487

Chapter 16

TCP Clients, SMTP, and POP3 Email 489

Overview .489
TCP Client Techniques. .490
TCP Client Implementation .494
SMTP Email Client. .502
POP3 Email Client .509
Summary .515

Appendix A

Configuration Notes 517

Network Configuration .517
Addressing .519
Testing the Network. .519
Windows SLIP Configuration. .520

x

Table of Contents

Appendix B

Resources .523

Publications . 523
Hardware . 524
Software . 524

Appendix C

Software on the CD-ROM 527

ARPSCAN . 528
DATAGRAM . 529
NETMON . 529
PICmicro® Software. 530
PING . 530
ROUTER . 531
SCRATCHP . 531
TELNET. 532
WEBROM . 532
WEBSERVE . 533
WEB_EGI . 533

Appendix D

PICmicro®-Specific Issues535

Compiler Support . 535

Function Index .541

Stucture Index .545

Index .547

What’s on the CD-ROM? .576

xi

Preface

The Lean Plan

This is a hands-on book about TCP/IP (transmission control protocol/Internet protocol) net-
working. You can browse it to get an overview of the subject or study a particular section in
detail, but to get maximum benefit, I suggest you set up your own network and try out the
software for real.

Not so long ago, I would have given you a detailed description of a computer network
called the Internet and how it allowed academics to pass information between their comput-
ers using the TCP/IP protocol family. Now the Internet encroaches all aspects of our lives, so
an introduction to it seems totally unnecessary. Yet a hands-on introduction to TCP/IP seems
highly necessary, because the very size of the Internet presents a massive barrier to those wish-
ing to understand its inner workings.

My first attempt at implementing TCP was not a great success. I’d waded through the spec-
ifications and thought, “this isn’t too bad,” and waded through the few public domain sources
I could find and thought, “this is horrendously complicated,” then wrote my own implementa-
tion. When I came to test it, the problems started in earnest. I couldn’t find a sensible set of
software tools for testing; whenever I found a problem, I wasn’t sure whether the fault lay
with the test software, the software under test, or my understanding of the specification.

What I needed was

•

an implementation I could understand

 — not a heavyweight implementation for a
large multiuser operating system, but a lightweight one that clearly showed the underlying
principles — and

•

software tools I could use

; that is, test utilities that allowed me to check my understand-
ing and implementation of the protocols.

xii

Preface

As time went by and my TCP/IP software matured, the Web became increasingly impor-
tant. My industrial customers would browse the Web at home or work and could see the
advantages of using a Web browser for remote control and to monitor their industrial equip-
ment. TCP became just a vehicle for conveying Web pages. The focus shifted from “I want
TCP/IP on my system” to “I want my system to produce Web pages,” and these pages always
included dynamic real-time data.

History was repeating itself; the software to produce these dynamic Web pages was
designed for large multiuser systems, and I couldn’t find small-scale implementations that
were usable on simple, low-cost embedded systems hardware. I needed:

•

a description of the techniques

 to insert live data into Web pages and

•

some simple platform-independent code

 that I could adapt for specific projects.

Having implemented many small-scale Web servers of my own (generally an 80188 pro-
cessor with 64Kb of ROM), I was delighted to hear of a 256-byte implementation on a
microcontroller, although I was disappointed to discover that it could only produce fixed
pages from its ROM, with no dynamic data. I wanted to know:

•

what compromises

 were associated with implementing TCP and a Web server on a
microcontroller and

•

what techniques

 I could use to insert dynamic data into its Web pages.

Almost by chance, the first edition of this book included a miniature Web server running
on a PICmicro®

1

. I wasn

’

t the first to create such a server, but I was the first to publish a full
description of the techniques used, including full source code. The success of the initial
offering prompted me to update this book to broaden the range of networks and protocols
supported on the PICmicro. Despite the

“

Web servers

”

 in the title of this book, there are many
ways to transfer data across a network, and I wanted to provide working examples of their
use.

Hopefully, you’ll find the answers you want in this book.

Embedded Systems

The term “embedded system” may be new to some of you and require some explanation,
even though you use embedded systems every day of your life. Microwave ovens, TVs, cars,
elevators, and aircraft are all controlled by computers, which don’t necessarily have a screen,
keyboard, and hard disk. A computer could be controlling your car without your knowledge:
an engine management system takes an input signal from the accelerator and provides out-
puts that control the engine.

These computers are embedded in a system, of which they may be only a small compo-
nent. The embedded system designer may have to work within tight constraints of size,
weight, power consumption, vibration, humidity, electrical interference, and above all, cost
and reliability. The PC architecture has been adapted for embedded systems operation, and
rugged single-board computers (SBCs) are available from a wide variety of suppliers, together
with the necessary add-on cards to process real-world signals. The ultimate in miniaturization

1. PICmicro® is the registered trademark of Microchip Technology Inc.

The Hardware

xiii

is the microcontroller, which is a complete computer on a single chip, including all the neces-
sary I/O interfaces.

Regardless of the user interface, most embedded systems have an external interface for
status monitoring and system diagnosis. Traditionally this has been in the form of a serial ter-
minal, but industry is starting to see the advantages of remote diagnosis: because Web
browser usage is so widespread, it seems the logical choice for a user interface. The browser is
technically a Web client, which implies that the embedded system must be a Web server;
hence, the title of this book.

Whether you are an embedded systems developer or not, I trust you will find plenty of
interest in this book. I’ll look at
• what software components are needed,
• how these components work,
• clear, simple implementation, and
• effective test strategies.

The qualities of simplicity and clarity have much to recommend them. Modern program-
ming toolkits are very useful because they can simplify a complex programming task so it
becomes a join-the-dots exercise, but the resulting bloated code may require much more com-
plex hardware than the slim-line code of your competitor; hence, the Lean Plan.

The Hardware

At the time of writing, the PC hardware platform, although distinctly showing its age, cannot
be ignored. The second-hand market is awash with perfectly serviceable PCs that don’t con-
tain the latest and fastest technology but are more than adequate for your purposes. There are
low-cost industrial SBCs that have a PC core, standard network interface, and the ability to
accept interface cards for a wide variety of real-world signals.

My software will run on all these PC compatibles, and even on PC incompatibles (such as
the 80188 CPU) with a very small amount of modification, because I have clearly isolated all
hardware and operating-system dependencies.

In addition to the PC code, I have included a miniature TCP/IP stack and Web server for a
Microchip PICmicro® microcontroller, using the Custom Computer Services PCM C com-
piler. A standard PICmicro evaluation board can be hand-modified to include the appropriate
peripherals (a circuit diagram is given), or a complete off-the-shelf board can be purchased
instead. I won’t pretend that it would be easy to adapt this software to another processor, but
there is an in-depth analysis of the difficulties associated with microcontroller implementa-
tions, which would give you a very significant head-start if working with a different CPU.

The Network

Base-level Ethernet (10Mbit) is still widely available; complete kits, including interface cards
and cabling, are available at low cost from computer retailers. My software directly supports
two of the most popular Ethernet cards — Novell NE2000 compatibles and 3COM 3C509
— and can potentially (if using the Borland Compiler) support other cards through the packet
driver interface, though the direct hardware interface approach is preferable because it makes
experimentation and debugging much easier.

xiv

Preface

When developing network software, you are very strongly advised to use a separate scratch
network, completely isolated from all other networks in the building. Not only does debug-
ging become much easier, but you also avoid the possibility of disrupting other network traffic.
It is remarkable how a minor change to the software can result in a massive increase in the net-
work traffic and a significant disruption to other network users. You have been warned!

The software also supports serial links through SLIP (serial line Internet protocol), and a
crossover serial cable between two PCs can, to a certain extent, be used as a substitute for a
real network.

The Operating System

You may be surprised by the extent to which I ignore the operating system. In the embedded
systems market, there is always pressure to simplify the hardware and reduce the costs, and
one way of achieving this is to use the simplest possible operating system, or none at all.

For those of you wedded to complex operating systems, and even more complex software
development environments, this will initially be an uncomfortable experience because you are
exposed to the harsh reality of real bare-metal programming. However, I hope that you will
soon come to appreciate the power, flexibility, and pure simplicity of this approach and grad-
ually come to the realization that for many common or garden-variety applications, an oper-
ating system (even a free operating system) is an expensive luxury. Luxury or not, I want to
use my desktop PC for development, so the software is compatible with Windows 95 and 98,
either in DOS, extended DOS, or Win32 console application mode.

My primary development system is a Windows 95 machine equipped with two network
cards — only one of which is installed in the operating system. This is extremely useful
because a single machine can simultaneously act as both network client (using a standard
Web browser) and server (using my Web server), making experimentation much easier.

The final target machine can be a relatively humble SBC running DOS or a microcontrol-
ler compatible with PC code without an operating system, although the latter would entail
some minor changes to the software provided.

The Development Environment

The following four PC compilers are supported.

Borland C++ v3.1.

An excellent DOS-hosted compiler with an integrated development
environment.

Borland (Inprise) C++ v4.52.

Windows-hosted compiler, which seems to be the latest ver-
sion that can generate executable files for DOS.

Microsoft Visual C++ v6.

Windows-hosted compiler that can generate Win32 console
applications.

DJGPP v2.02 with RHIDE v1.4.

Part of the GNU project, this is a remarkably good clone
of the Borland 3.1 development environment, which runs in a 32-bit extended DOS environ-
ment and can be downloaded free of charge.

The Borland compilers, though ostensibly obsolete, may be found on the CD-ROM of
some C programming tutorial books or may be bundled with their 32-bit cousins. The

The Software

xv

high-level software can be compiled using all of these environments, but I have not been so
fortunate with the low-level network interface code.
• The Borland compilers are the easiest to use because they allow the use of interrupts

without the need for machine code inserts and so can support the full range of network
interfaces.

• With the Microsoft compiler, the network card and SLIP interfaces are supported, but the
packet driver interface is not.

• Only the direct network card interface is supported when using the DJGPP compiler.

Because the direct network card interface is the easiest to debug, and hence more suitable
for experimentation, this restriction isn’t as onerous as it might appear.

If your favorite compiler isn’t on the list, I apologize for the omission, but I am very
unlikely to add it. Each compiler represents a very significant amount of testing, and my pref-
erence is to reduce, rather than increase, the number of compilers supported. If your compiler
is similar to the above (for example, an earlier version), then you should have little or no
adaptation work to perform, though I can’t comment on any compiler I haven’t tried.

PICmicro Compilers.

The early software used the Custom Computer Services (CCS) PCM
v2.693, but later developments are broadly compatible with the CCS and Hitech compilers
for the PIC16xxx and PIC18xxx series microcontrollers. A detailed discussion of compatibil-
ity issues is beyond the scope of this chapter. See Appendix D and the software release notes
on the CD-ROM for more information.

The Software

The enclosed CD-ROM contains complete source code to everything in this book so that you,
as purchaser of the book, can experiment. However, the author retains full copyright to the
software, and it may only be distributed in conjunction with the book; for example, you may
not post any of the source code on the Internet or misrepresent its authorship by extracting
fragments or altering the copyright notices.

If you want to sell anything that contains this software, a license is required for the
“incorporation” of the software into each commercial product. This normally takes the form
of a one-off payment that allows unlimited incorporation of any executable code derived
from this source. There are no additional development fees (apart from purchase of the
book), and license fees are kept low to encourage commercial usage. Full details and software
updates are on the Iosoft Ltd. Web site at

www.iosoft.co.uk

.

Acknowledgments

The author owes a profound debt of gratitude to Berney Williams of CMP Books for being so
keen on this project, Anthony Winter for his proofreading skills and advice, Glen Middleton
of Arcom Control Systems Ltd. and Adrian Nicol of Io Ltd. for their help with the hardware,
and, above all, to Jane McSweeney (now Jane Bentham) for her continued enthusiasm, sup-
port, and wonderful cakes.

xvi

Preface

1

1

Chapter 1

Introduction

The Lean Plan
This is a software book, so it contains a lot of code, most of which has been specially written
(or specially adapted) for the book. The software isn’t a museum piece, to be studied in a
glass case, but rather a construction kit, to promote understanding through experimentation.
The text is interspersed with source code fragments that illustrate the points being discussed
and provide working examples of theoretical concepts. All the source code in the book, and
complete project configurations for various compilers, are on the enclosed CD-ROM.

When I started writing this book, I intended to concentrate on the protocol aspects of
embedded Web servers, but I came to realize that the techniques of providing dynamic con-
tent (on-the-fly Web page generation) and client/server data transfers were equally important,
yet relatively unexplored. Here are some reasons for studying this book.

TCP/IP. You want to understand the inner workings of TCP/IP and need some tools and
utilities to experiment with.

Dynamic Web Content. You have an embedded TCP/IP stack and need to insert dynamic
data into the Web pages.

2 Chapter 1: Introduction

Miniaturization. You are interested in incorporating a miniature Web server in your sys-
tem but need to understand what resources are required and what compromises will have to
be made.

Prototyping. You want a prebuilt Web server that you can customize to evaluate the con-
cept in a proposed application.

Data transfer. You need to transfer data across a network using standard protocols.

Client/server programming. You have to interface to standard TCP/IP applications, such
as email servers.

Of course, these areas are not mutually exclusive, but I do understand that you may not
want to read this book in a strict linear order. As far as possible, each chapter stands on its own
and provides a stand-alone utility that allows you to experiment with the concepts discussed.

I won’t assume any prior experience with network protocols, just a working knowledge of
the C programming language. In the Preface, I detailed the hardware and software you would
need to take full advantage of the source code in the book. You don’t have to treat this book
as a hands-on software development exercise, but it would help your understanding if you
did.

Getting Started
On the CD-ROM, you’ll find the directory tcplean with several subdirectories.

BC31 compiler-specific files for Borland C++ v3.1
BC45 compiler-specific files for Borland C++ v4.52
DJGPP compiler-specific files for (GNU) DJGPP and RHIDE
PCM the PICmicro®-specific1 files for Chapters 9–11
ROMDOCS sample documents for the PICmicro Web server
SOURCE all source code for PC systems
VC6 compiler-specific files for Microsoft Visual C++ v6
WEBDOCS sample documents for the PC Web server

You’ll also find the directory chipweb with a two subdirectories containing the files for
Chapters 12–16.

ARCHIVE zip files containing older versions of the ChipWeb source code
P16WEB latest ChipWeb source code

Executable copies of all the utilities, sample configuration files, and a README file with any
late-breaking update information are in tcplean. Preferably, the complete directory tree d:\
tcplean (where d: is the CD-ROM drive) should be copied to c:\tcplean on your hard disk,

1. PICmicro® is the registered trademark of Microchip Technology Inc.; PICDEM.net™ is the trade-
mark of Microchip Technology Inc.

Getting Started 3

and d:\chipweb to c:\chipweb. If a different directory path is used, it will be necessary to edit
the compiler project files.

The utilities read a configuration file to identify the network parameters and hardware
configuration; the default is tcplean.cfg, read from the current working directory. It is
unlikely that this will contain the correct hardware configuration for your system, so it is
important that you change the configuration file before running any of the utilities. See
Appendix A for details. If you attempt to use my default configuration without checking its
suitability, it may conflict with your current operating system settings and cause a lockup.

It is possible to browse the source files on the CD-ROM and execute the utilities on it
without loading them onto your hard disk, though you still need a to adapt the configuration
file and store it in the current working directory.

c:\>cd tcplean
c:\tcplean>d:\tcplean\ping 10.1.1.1

This would execute the utility on the CD-ROM using the configuration file.

c:\tcplean\tcplean.cfg

The default configuration file may be overridden using the -c command-line option.

c:\tcplean>ping -c slip 172.16.1.1

This uses the alternative configuration file slip.cfg, which makes it possible to experiment
with multiple network configurations without having to rebuild the software each time.

If you are in any doubt about the command-line arguments for a utility, use the -? option.

c:\>cd tcplean
c:\tcplean>ping -?

Some of the utilities have the same name as their DOS counterparts (because they do the same
job), so it is important to change to tcplean before attempting to run them.

A final word of warning: I strongly recommend that you create a new “scratch” network
for your experimentation that is completely isolated from all other networks in the building.
It is a very bad idea to experiment on a “live” network.

Network Configuration
The DOS software in this book supports the following network hardware.

Direct-drive network card Novell NE2000-compatible or 3COM 3C509 Ethernet cards
can be direct-driven by the software. This is the preferred option because of the ease of con-
figuration and debugging.

Serial link A serial line Internet protocol (SLIP) link between two PCs or a PC and the PIC-
micro miniature Web server.

Packet driver An otherwise unsupported network card may be used via a Crynwr packet
driver supplied by the card manufacturer.

Some combinations of network hardware and compiler are not supported. Consult Appendix
A and the README file for full information on the network configuration options.

4 Chapter 1: Introduction

Compiler Configuration
Executable versions of all the DOS projects are included within the tcplean directory, so ini-
tial experimentation can take place without a compiler. The project files for each compiler
reside in a separate directory, as described earlier, and all the compiler configuration informa-
tion resides within the project files. All the source code files reside in a single shared directory.
There are a few instances where compiler-specific code (generally Win32-specific code) must
be generated, in which case automatic conditional compilation is used.

Load specific projects for the following compilers:

Borland C++ v3.1 In a DOS box, change to the BC31 directory and run BC using the
project filename.

c:\>cd \tcplean\bc31
c:\tcplean\bc31>bc ping.prj

Borland C++ v4.52 Launch the Integrated Development Environment (IDE) and select
Project–Open Project and the desired IDE file in the BC45 directory.

DJGPP and RHIDE Launch the RHIDE IDE and select Project–Open Project and the
desired GPR file in the DJGPP directory.

Visual C++ v6 Launch the IDE and select File–Open Workspace and the desired DSW file
in the VC6 directory.

Custom Computer Services PCM The PICmicro cross-compiler uses a completely differ-
ent set of source code that resides in the PCM directory. Open a DOS box and change direc-
tory to \tcplean\pcm. Copy the necessary system files (16C76.h and ctype.h) into this
directory from the standard PCM distribution. Run the PCM compiler, specifying PWEB.C on
the command line.

c:\>cd \tcplean\pcm
c:\tcplean\pcm>copy \picc\examples\16c76.h
c:\tcplean\pcm>copy \picc\examples\ctype.h
c:\tcplean\pcm>\picc\pcm pweb.c

I run the PCM compiler from within the IDE of an emulator; see the emulator documenta-
tion for details on how to do this. When first using such a setup, make a minor but readily
observable change, rebuild, and check that the new executable really has been downloaded
into the emulator. It is all too easy to omit a vital step in the rebuild chain, such that the old
file is still being executed.

Other PICmicro® Compilers
The software in Chapters 12–16 is broadly compatible with the later versions of the CCS and
Hitech PICmicro compilers, for both the PIC16xxx and PIC18xxx series of devices. There are
compatibility issues with some versions of these compilers; see Appendix D for guidance on
compiler-specific issues, and always refer to the release notes (in file readme.txt) before using
a specific ChipWeb release.

Software Introduction 5

Software Introduction
For the rest of this chapter, I’ll look at the low-level hardware and software functions needed
to support software development.
• network hardware characteristics
• network device drivers
• process timing
• state machines
• buffering
• coding conventions

Even if you’re keen to get on with the protocols, I suggest you at least skim this material,
since it forms the groundwork for the later chapters.

Network Hardware
To help in setting up a serial or network link, I’ve included some sample configurations in
Appendix A, together with the relevant software installations. Assuming one or both are
installed, I will examine their characteristics with a view to producing the low-level hardware
device drivers.

Figure 1.1 Serial link and network topologies.

Serial link

Network - bus topology

Network - star topology

6 Chapter 1: Introduction

Figure 1.1 shows two types of networks (two “topologies”): the older style bus network,
where the computers are connected to a single common cable, and the newer star network,
where the computers are individually connected to a common box (a hub), which electrically
copies the network signals from one computer to all others. Fortunately, the operation of an
Ethernet hub is completely transparent to the software, so you can still treat the network as if
the computers were sharing a common cable.

Serial Hardware Characteristics
The simplest communication link between two PCs (A and B) consists of three wires: a ground
connection, a wire from the A transmit to the B receive, and a wire from the B transmit to the
A receive. A commercial serial crossover cable (often called a null modem or “Laplink” cable)
generally has more wires connected so that the handshake signals are transferred, but you’ll
concentrate on the two data lines, which have the following characteristics.

Both computers have equal access to the serial link. The hardware simply acts as a
“data pipe” between the two computers and does not prioritize one computer above another.

There are only two computers (nodes) on the network. Throughout this book, I’ll use
“node” as shorthand for “a computer on the network.” Insofar as the simple serial link con-
stitutes a network, it is clear that if one node transmits a message, it can only be received by
the other node and no others.

A node can transmit data at any time. This is technically known as a full duplex system;
both computers can transmit and receive simultaneously without any clash of data signals.

Message delivery is reliable. The assumption is that the two nodes are close to each
other, with a short connecting cable, so there will be no corruption of data in transit. The pre-
dominant failure mode is a catastrophic link failure, such as a disconnection of the cable or a
node powering down.

The serial data is a free-format stream of bytes, with little or no integrity checking.

The serial hardware is only designed for short-distance interconnects, so it has a very simple
error-checking scheme (parity bit), which is often disabled. To guarantee message integrity,
error checking must be provided in software.

There is no limit on message size. Because the serial data is simply a stream of bytes
with no predefined start or end, there is no physical restriction on its length.

There is no need for addressing Because there is only one possible recipient for each
message, there is no need to include an address identifying that recipient.

Network Hardware Characteristics
Whatever the actual topology, a base-level Ethernet network appears logically to be two or
more computers transmitting and receiving on a single shared medium (cable).

Network Hardware 7

All computers on the network have equal access to the network. This is called peer-
to-peer networking, in which all nodes are equal. The alternative (master–slave networking)
assumes that one or more special nodes control and regulate all network traffic; they are the
masters, and their slaves only speak when spoken to. Master–slave operation is very useful
for industrial data acquisition, where all data and control is to be funneled through a few
large computer systems but prohibits the kind of ad hoc communication that is required in an
office or on the Internet.

All nodes have a 48-bit address that is unique on the network. Just as a postal address
uniquely identifies a specific location in the world, so a node address (generally known as a
media access and control, or MAC, address) must uniquely identify a node on the network. In
fact, the standardization of Ethernet guarantees each node address to be also unique in the
world; you can mix and match Ethernet adaptors from different manufacturers, secure in the
knowledge that no two will have the same 48-bit address.

Any node may transmit on the network when it is idle. If a node is to communicate
with another, it must wait for all others to be silent before it can transmit. Because all nodes
are equal, they need not ask permission before transmitting on the network; they simply wait
for a suitable gap in the network traffic.

Message delivery is unreliable. “Unreliable? Why don’t you fix it?” Networks are, by
their very nature, an unreliable way of sending data. The failure modes range from the cata-
strophic (the recipient’s computer is powered down or physically disconnected from the net-
work) to the intermittent (a packet has been corrupted by collision or electrical interference).
The network hardware has the ability to detect and compensate for some intermittent faults
(e.g., a retry in the event of a packet collision), but eventually an error will occur that has to
be handled in software, so the software must assume the network is unreliable.

All data on the network is in blocks (frames) with a defined beginning and end and

an integrity check. Nodes that are going to transmit when they want need a defined for-
mat for their transmissions so that others know when they are starting or finishing, assuming
each transmission is a block with start and end markers and some form of checking (usually a
CRC, or cyclic redundancy check) to ensure it hasn’t been damaged in transit. The name
given to this block differs according to the network used; Ethernet blocks are called frames.

The network can send a maximum of 1,500 bytes of data per frame. All networks
have an upper limit on the size of data they can carry in one frame. This is called the maxi-
mum transfer unit, or MTU. Ethernet frames can contain up to 1.5Kb, but TCP/IP software
will work satisfactorily with a lot smaller MTU.

All messages are equipped with a source and destination address. Frames are usu-
ally intended for a single recipient; this is known as unicast transmission. Occasionally, it may
be necessary to send a frame to all nodes on the network, which is a broadcast transmission.

8 Chapter 1: Introduction

Device Drivers
It would be helpful if the driver software presented a common interface to the higher-level
code, but it is clear from the preceding analysis that there are significant differences; these are
summarized in Table 1.1.

Serial Driver Requirements
TCP/IP assumes the network data is sent in blocks, with a defined beginning and end, so the
serial drivers must convert the free-format serial byte stream into well-defined blocks.

SLIP
Fortunately, one of the TCP/IP families of standards, SLIP, provides exactly this functionality. It
uses simple escape codes inserted in the serial data stream to signal block boundaries as follows.
• The end of each block is signaled by a special End byte, with a value of C0h.
• If a data byte equals C0h, two bytes with the values DB, DC are sent instead.
• If a data byte equals DBh, two bytes with the values DB, DD are sent instead.

Additionally, most implementations send the End byte at the beginning of each block to
clear out garbage characters prior to starting the new message (Figure 1.2).

Figure 1.2 SLIP frame.

There is effectively no limit to the size of the data block, but you have to decide on some
value in order to dimension the data buffers. With old slow serial links, a maximum size of
256 bytes was generally used, but you’ll be using faster links, and a larger size is better for
minimizing protocol overhead. By convention, 1,006 bytes is often used.

The encoding method can best be illustrated by an example (Figure 1.3). Assume a six-
byte block of data with the hex values BF C0 C1 DB DC is sent; it is expanded to C0 BF DB DC C1
DB DD DC C0.

Table 1.1 RS232 serial versus Ethernet.

RS232 Serial Ethernet

Access Equal Equal

Address range None 48-bit

Transmit Any time When network is idle

Delivery Reliable Unreliable

Format None (data stream) Frame

Data length Unlimited 1.5Kb per frame

Addressing None Source, destination, broadcast

Data
1-1006 bytes

END
C0h

END
C0h

Device Drivers 9

Figure 1.3 SLIP example.

The original data has nearly doubled in size, due to my deliberately awkward choice of
data values. In normal data streams, the overhead is much lower.

Modem Emulation
An additional problem with serial networking is that most PCs are configured to use a
modem (Figure 1.4) to an Internet Service Provider (ISP).

Figure 1.4 Modem communication.

I’ll create a Web server, but instead of two modems, I’ll use a serial (null modem) cable to
link it to the browser. The problem is that my Web server will then receive the browser’s com-
mands to its modem. If these go unanswered, the browser will assume its modem is faulty and
report this to the user.

The easiest solution is to include a simple modem emulator in your serial driver so that the
browser is fooled into thinking it is talking to a modem. Because modem commands are text
based, you can easily distinguish between them and the SLIP message blocks prefixed by the
delimiter character (C0h); when the latter appears, disengage the modem emulation.

Modem commands begin with the uppercase letters AT, followed by zero or more alpha-
betic command letters, with alphabetic or numeric arguments, terminated by an ASCII car-
riage return (<CR>) character. The usual reply are the uppercase letters OK, followed by a
carriage return and line feed (<CR><LF>). Table 1.2 shows a few typical command–response

BFh

END
C0h

END
C0h

DChDBhC1hC0h

BFh DChDDhC1hDChDBh DBh

PC system Service ProviderModem

Telephone

Modem

Web browser Web server

Serial Serial

10 Chapter 1: Introduction

sequences for a simple modem. This emulation would respond OK to all commands; this is
normally sufficient.

Ethernet Driver Requirements
The Ethernet message (frame) is necessarily more complicated than the serial message (Figure
1.5). It contains the
• destination address,
• source address,
• type/length field,
• data, and
• cyclic redundancy check (CRC).

Figure 1.5 Ethernet frame.

It is traditional to include the CRC when quoting the Ethernet frame size (e.g. a maximum
frame size of 1518 bytes), even though it is ignored by the software, and is usually removed
by the lower-level driver code.

Table 1.2 Modem command–response sequences.

Browser Modem Response

AT<CR> OK<CR><LF> Check modem present

ATZ<CR> OK<CR><LF> Reset modem

ATDT12345
OK<CR><LF>
CONNECT 38400<CR><LF> Dial phone number

Dest
6 bytes

Srce
6 bytes

Data
46-1500 bytes

Type
2 bytes

CRC
4 bytes

 Ethernet frame 64 - 1518 bytes

#define MACLEN 6 /* Ethernet (MAC) address length */

/* Ehernet hardware Rx frame length includes the trailing CRC */

#define MAXFRAMEC 1518 /* Maximum frame size (incl CRC) */

#define MINFRAMEC 64 /* Minimum frame size (incl CRC) */

/* Higher-level drivers exclude the CRC from the frame length */

#define MAXFRAME 1514 /* Maximum frame size (excl CRC) */

#define MINFRAME 60 /* Minimum frame size (excl CRC) */

Device Drivers 11

This is the basic Ethernet frame, also known as Ethernet 2 (Ethernet 1 is obsolete), or DIX
Ethernet (after its creators, DEC, Intel, and Xerox).

Destination and Source Addresses
These six-byte values identify the recipient and sender of the frame and are generally known
as media access and control (MAC) addresses. They are standardized by the IEEE; the first
three bytes identify the network hardware vendor, and the next three are used by that vendor
to guarantee the address is unique, so they are different for every network adaptor that the
manufacturer has ever produced.

Each adaptor has its six-byte address burned into a memory device at manufacture, but it
is normally the responsibility of the networking software to copy this value into the appropri-
ate field of the network packet. A destination address of all ones indicates a broadcast address.

Type/Length Field
Unfortunately, there are several Ethernet standards, and they make different use of this two-
byte field. One standard uses it as a length, giving the total count of bytes in the data field.
Others use it as a protocol type, indicating the protocol that is being used in the data field.
Mercifully there are simple ways of detecting and handling these standards, which are dis-
cussed in Chapter 3.

Data
This area contains user data in any format; the only restrictions are that its minimum size is
46 bytes and its maximum is 1,500 bytes. The minimum is necessary to ensure that the over-
all frame is at least 64 bytes. If it were smaller, there would be a danger that frame collisions
wouldn’t be detected on large networks.

/* Ethernet (DIX) header */

typedef struct {

 BYTE dest[MACLEN]; /* Destination MAC address */

 BYTE srce[MACLEN]; /* Source MAC address */

 WORD ptype; /* Protocol type or length */

} ETHERHDR;

/* Ethernet (DIX) frame; data size is frame size minus header & CRC */

#define ETHERMTU (MAXFRAME-sizeof(ETHERHDR))

typedef struct {

 ETHERHDR h; /* Header */

 BYTE data[ETHERMTU]; /* Data */

 LWORD crc; /* CRC */

} ETHERFRAME;

12 Chapter 1: Introduction

Cyclic Redundancy Check
This is a check value that allows the network controller to discard corrupted frames. It is
automatically appended by the Ethernet controller on transmit and checked on receive. The
bit-by-bit algorithm is particularly suited to hardware implementation. The following code
fragment is equivalent but operates on byte values.

A starting CRC value of FFFFFFFFh is sent to this function, together with the first byte
value. A new CRC value is returned, which is sent to this function together with the next byte
value, and so on. When all bytes have been processed, the final CRC value is inverted (one’s
complement) to produce the four-byte Ethernet CRC, which would be transmitted least sig-
nificant byte first.

Generic Driver Functions
You need some generic network driver functions that are usable for a variety of network
types and hardware configurations. This node-specific information will be in a configuration
file and read from disk at boot time. The following code fragments show what a line in this
file might look like.

This specifies an Ethernet interface using an NE2000-compatible card at I/O address 280h.
See Appendix A for details on the cards and networks supported.

This string passed to a network initialization function, to open the required interface.

#define ETHERPOLY 0xedb88320L

/* Update CRC for next input byte */

unsigned long crc32(unsigned long crc, unsigned char b)

{

 int i;

 for (i=0; i<8; i++)

 {

 if ((crc ^ b) & 1)

 crc = (crc >> 1) ^ ETHERPOLY;

 else

 crc >>= 1;

 b >>= 1;

 }

 return(crc);

}

net ether ne 0x280

WORD open_net(char *cfgstr);

Device Drivers 13

This function opens up the network driver, given a string specifying the type of driver and
configuration parameters, and returns a driver type, which must be used in all subsequent
accesses, or a 0 on error (e.g., when the hardware is in use by other software).

This function shuts down the network driver. The returned value for the driver type serves
two purposes: it provides a unique handle for the interface, and its flags inform you of the
type of interface in use. This allows you to create software that can handle multiple network
interfaces, each with different hardware characteristics.

You need a generic frame that can accommodate any one of the different frame types. Its
header includes the driver type.

The header also has a length word to assist in low-level buffering (e.g., polygonal buffer-
ing, described later) and support for fragmentation. This is where a frame that exceeds the
MTU size is broken up, sent as two smaller frames, and reassembled at the far end. This will
be discussed further in Chapter 3; for now, you need to be aware that the maximum frame
size (MAXGEN in the above definitions) need not be constrained to the maximum Ethernet frame
size. You’ll use a MAXGEN of just over 3Kb, so two complete Ethernet frames can be stored in
the one GENFRAME.

Having standardized on a generic frame, you can create the driver functions to read and
write these frames.

WORD get_net(GENFRAME *gfp); Checks for an incoming frame. If present, it copies it into
the given buffer and returns the data length. If there is no frame, it returns 0.

WORD put_net(GENFRAME *gfp, WORD len); Sends a frame, given its length, and returns the
total transmitted length or 0 if error.

You don’t need to specify which network interface is used because the function can exam-
ine the driver-type field to determine this. Sample device drivers have been included on the
CD-ROM, but they will not be discussed here because they are highly specific to the hard-
ware (and operating system).

void close_net(WORD dtype);

/* General-purpose frame header, and frame including header */

typedef struct {

 WORD len; /* Length of data in genframe buffer */

 WORD dtype; /* Driver type */

 WORD fragoff; /* Offset of fragment within buffer */

} GENHDR;

typedef struct {

 GENHDR g; /* General-pupose frame header */

 BYTE buff[MAXGEN]; /* Frame itself (2 frames if fragmented) */

} GENFRAME;

14 Chapter 1: Introduction

Configuration File Format
As part of the experimentation in this book, you’ll frequently need to change the software
parameters at run time. Because it is tedious to type these in every time the program runs,
they’ll be incorporated into a configuration file called tcplean.cfg. By default, utilities will
read this file from the default file path, although an alternative configuration filename can be
specified on the command line.

The file consists of ASCII text lines, each line referring to one configuration item.

TCP/IP Lean configuration file

net ether ne 0x280
id node1
ip 10.1.1.1
gate 10.1.1.111

EOF

Blank lines, or lines beginning with #, are treated as comments. At the start of each line is
a single lowercase configuration parameter name delimited by white space and followed by a
string giving the required parameter value(s).

The content of the file is specific to the software being run; if any configuration parameter
is unrecognized, it is ignored. In the above example, the net entry defines the network driver
to be used and its base I/O address. The node name is identified as node1, with IP address
10.1.1.1 and gateway address 10.1.1.111 given. Appendix A gives guidance on how to cus-
tomize the configuration file for the network hardware you are using.

Process Timer
When implementing a protocol, an event for a future time is often scheduled. Whenever you
send a packet on the network, you must assume that it, or the response to it, might go astray.
After a suitable time has elapsed, you may want to attempt a retry or alert the user.

Most modern operating systems have a built-in provision for scheduling such events, but I
am very keen to keep the code Operating System (OS) independent and to be able to run it on
the bare metal of small embedded systems. To this end, my software includes a minimal event
scheduler of its own, which requires a minimum of OS support and can be adapted to use the
specific features of your favorite OS.

The simplest scheduling algorithm is to delay between one event and another.

putpacket(...); /* Packet Tx */

delay(2000); /* Wait 2 seconds */

if (getpacket(...)) /* Check for packet Rx */

{

 /* Handle response packet */

}

else

{

 /* Handle error condition */

}

Process Timer 15

The dead time between transmission and reception is highly inefficient. If the response arrives
within 100 milliseconds (ms), the system would wait a further 900ms before processing it.
With a multitasking OS, you could use sleep instead of delay, which would wake up on
time-out or when the packet arrived (a method called blocking, since it blocks execution until
an event occurs). An alternative pseudo-multitasking method is to use timer interrupts to
keep track of elapsed time and to initiate corrective action as necessary, but this approach
would be highly specific to the OS.

A simple compromise, not entirely unfamiliar to old-style Windows programmers, is to
have the software check for its own events and handle them appropriately.

The timeout() function takes two arguments: the first is a pointer to a variable that will
hold the starting time (tick count), and the second is the required time-out in seconds. When
the time-out is exceeded, the function triggers an event by reloading the starting time with the
current time and returning a non-zero value. For example, the following code fragment prints
a seconds count every second.

putpacket(...); /* Packet Tx */

timeout(&txtimer, 0); /* Start timer */

while (1)

{

 /* Check for packet Rx */

 if (getpacket(...))

 {

 /* Handle response packet */

 }

 /* Check for timeout on response */

 else if (timeout(&txtimer, 2))

 {

 /* Handle error condition */

 }

 /* Check for other events */

 else if ...

}

WORD sectimer, secs=0;

timeout(§imer, 0);

while (1)

{

 if (timeout(§imer, 1))

 printf("%u sec\n", ++secs);

}

16 Chapter 1: Introduction

Before a timer is used, a timeout() call must be made using time value 0. This forces an
immediate time-out, which loads the current (starting) time into the timer variable. The tim-
eout() function is easy to implement, providing you take care with the data types.

If the use of unsigned arithmetic appears counterintuitive, consider the following code.

What is the value of diff? It must be 10, whatever the starting value.
There is a hidden trap that is due to timer granularity. The if statement in the code

will sometimes return TRUE, even though much less than a second has elapsed. This is because
the two statements happen to bracket a timer tick, so it appears that one second has elapsed
when it has not.

A cure for this problem is to change the unit of measurement to milliseconds, although the
nonstandard millisecond timer, mstime(), must be coded for each operating system.

/* Check for timeout on a given tick counter, return non-zero if true */

int timeout(WORD *timep, int sec)

{

 WORD tim, diff;

 int tout=0;

 tim = (WORD)time(0);

 diff = tim - *timep;

 if (sec==0 || diff>=sec)

 {

 *timep = tim;

 tout = 1;

 }

 return(tout);

}

WORD a, b, diff;

a = <any starting value>;

b = a + 10;

diff = b - a;

timeout(§imer, 0);

if (timeout(§imer, 1))

 …

/* Check for timeout on a given msec counter, return non-zero if true */

int mstimeout(LWORD *timep, int msec)

{

State Machines 17

Alternatively, you can just document this feature by saying that there is a tolerance of –1/+0
seconds on the time measurement. Given this timing tolerance, you might be surprised that my
trivial example of printing seconds works as suggested.

It works because the state changes in the main loop are locked to the timer tick changes.
The whole operation has become synchronous with the timer, so after a random delay of up
to one second, the one-second ticks are displayed correctly.

When working with protocols, you will frequently see software processes synchronizing
with external events, such as the arrival of data frames, to form a pseudo-synchronous sys-
tem. When testing your software, you must be sure that this rhythm is regularly disrupted
(e.g., by interleaving accesses to another system) to ensure adequate test coverage.

State Machines
When learning to program, I always avoided state machines and skipped the examples (which
always seemed to be based on traffic lights) because I couldn’t see the point. Why go to all the
effort of drawing those awkward diagrams when a simple bit of procedural code would do
the job very effectively?

Tackling network protocols finally convinced me of the error of my ways. You may think a
network transaction is a tightly specified sequence of events that can be handled by simple
procedural code, but that is to deny the unpredictability (or unreliability, as I discussed earlier)

 LWORD tim;

 long diff;

 int tout=0;

 tim = mstime();

 diff = tim - *timep;

 if (msec==0 || diff>=msec)

 {

 *timep = tim;

 tout = 1;

 }

 return(tout);

}

WORD sectimer, secs=0;

timeout(§imer, 0);

while (1)

{

 if (timeout(§imer, 1))

 printf("%u sec\n", ++secs);

}

18 Chapter 1: Introduction

of any network. In the middle of an orderly transaction, your software might see some
strangely inconsistent data, perhaps caused by a bug in the someone else’s software or your
own. Either way, your software must make a sensible response to this situation, and it can’t do
that if you didn’t plan for this possibility. True, you can’t foresee every problem that may
occur, but with proper analysis you can foresee every type of problem and write in a strategy
to handle it.

Only the simplest of network transactions are stateless; that is, neither side needs to keep
any state information about the other. Usually, each side keeps track of the other and uses the
network to
• signal a change of state,
• signal the other machine to change its state, or
• check whether the other machine has signaled a change of state.

The key word is signal. Signals are sent and received over the network to ensure that two
machines remain in sync; that is, they track each other’s state changes. The signals may be
explicit (an indicator variable set to a specific value) or implicit (a quantity exceeding a given
threshold). Either way, the signals must be detected and tracked by the recipient.

Any error in this tracking will usually lead to a rapid breakdown in communications.
When such problems occur, inexperienced network programmers tend to concentrate on the
data, rather than the states. If a file transfer fails, they might seek deep meaning in the actual
number of bytes transferred, whereas an older hand would try to establish whether a state
change had occurred and what caused it at the moment of failure. This process is made much
easier if the protocol software has specifically defined states and has the ability to display or
log the state information while it is running.

At the risk of creating a chapter that you will skip, I’d like to present a simple, worked
example of state machine design, showing the relationship between state diagram, state table,
and software for a simple communications device, the telephone.

Telephone State Machine
If you ignore outgoing calls, what states can a telephone be in?

Idle on-hook, unused

Ringing on-hook, bell ringing

Connected off-hook, connected to another phone

Sending sending speech to other phone

Receiving receiving speech from other phone

The last two states are debatable, since a telephone can send and receive simultaneously.
However, most human beings possess a half-duplex audio system (they seemingly can’t speak
and listen at the same time), so the separation into transmission and reception is logical.

A telephone changes state by a combination of electrical messages down the phone cable
and by user actions. From the point of view of a hypothetical microcontroller in the tele-
phone, these might all be considered signals.

State Machines 19

Line ring ring signal from another phone

Line idle no signal on phone line

Pick up user picks up handset

Mic. speech user speaks into microphone

Line speech speech signal from other phone

Hang up user replaces handset

It is now necessary to define which signals cause transitions between states; for example,
to change state from idle to ringing, a ring signal is required.

It is traditional to document these state changes using a state diagram such as Figure 1.6,
which is a form of flowchart with special symbols. Each circle represents a defined state, and
the arrows between circles are the state transitions, labeled with the signal that causes the
transition. So line speech causes a transition from the connected state to the receiving state,
and line idle causes the transition back to connected.

Because of the inherent limitations of the drawing method, these diagrams tend to over-
simplify the state transitions; for example, Figure 1.6 doesn’t show a state change if the user
hangs up while receiving.

A more rigorous approach is to list all the states as rows of a table and all the signals as col-
umns (Table 1.3). The table entries give a new state or are blank if there is no change of state.

Figure 1.6 Telephone state diagram.

IDLE

Ringing

Line ring

Connected

Pick up

Sending Receiving

Hang up

Mic speech

Mic idle
Line speech

Line idle

Line idle

20 Chapter 1: Introduction

Once the table has been created, it isn’t difficult to generate the corresponding code. You
could use a two-dimensional lookup table, although a series of conditional statements are
generally more appropriate.

Table 1.3 Telephone state table.

L
in

e
 R

in
g

L
in

e
 i
d

le

P
ic

k
 u

p

M
ic

.
s
p

e
e

c
h

M
ic

.
id

le

L
in

e
 s

p
e

e
c
h

H
a

n
g

 u
p

Idle Ringing

Ringing Idle Connected Idle

Connected Sending Receiving Idle

Sending Connected Idle

Receiving Connected Idle

switch(state)

{

 case STATE_IDLE:

 if (signal == SIG_LINE_RING)

 newstate(STATE_RINGING);

 break;

 case STATE_RINGING:

 if (signal == SIG_PICKUP)

 newstate(STATE_CONNECTED);

 else if (signal == SIG_LINE_IDLE)

 newstate(STATE_IDLE);

 break;

 case STATE_CONNECTED:

 // ..and so on

}

Buffering 21

I have created an explicit state machine where the states, signals, and relationship between
them are clearly and explicitly identified. Contrast this with an implicit state machine, where
the current state is buried in function calls.

Here, the current state is indicated implicitly by the current position in the code, and it is
far harder to keep control of all the possible state transitions, particularly under error condi-
tions. The stack-based call return mechanism imposes a hierarchical structure that is ill suited
to the arbitrary state transitions required. It is important that the state machine is explicitly
created, rather than being an accidental by-product of the way the software has been struc-
tured. The requirements of the state machine must dictate the software structure, not (as is
often the case) the other way around.

Buffering
To support the protocols, three special buffer types will be used. The first is a modified ver-
sion of the standard first in, first out (FIFO) to accommodate an extra trial pointer; the sec-
ond is a fixed-data-length variant of this, and the third is a FIFO specifically designed for bit-
wide, rather than byte-wide, transfers.

FITO Buffer
The FITO (first in, trial out) is a variant of the standard FIFO, or circular buffer (Figure 1.7).
A normal FIFO has one input and one output pointer; data is added to the buffer using the
input pointer and removed using the output pointer. For example, assume that a 10-character
FIFO has the letters “ABCDEFG” added, then “ABCDE” removed, then “HIJKL” added.

void idle(void)

{

 while (1)

 {

 if (signal == SIG_LINE_RING)

 ringing();

 }

}

void ringing(void)

{

 while (signal != SIG_HANGUP)

 {

 if (signal == SIG_PICKUP)

 connected();

 }

}

void connected(void)

{

 // ... and so on

22 Chapter 1: Introduction

Figure 1.7 FIFO example.

The circularity of the buffer is demonstrated in Figure 1.7 by the second addition; instead
of running off the end, the input pointer wraps around to the start, providing there is suffi-
cient space (i.e., the pointers do not collide). Note that after removal, the characters
“ABCDE” are shown as still present in the buffer; only the output pointer has changed posi-
tion. This reflects standard practice, in that there is little point in clearing out unused loca-
tions, so the old characters remain until overwritten.

Now imagine this FIFO is being used in a Web server; the input text is a Web page stored
on disk, and the output is being transmitted on the network. Due to network unreliability,
you don’t actually know whether the transmitted data has been received or has been lost in
transit. If the latter, then the data will have to be retransmitted, but it is no longer in the
FIFO, so it must be refetched from disk.

It would be better if the FIFO had the ability to retain transmitted data until an acknowl-
edgment was received; that is, it keeps a marker for output data that may still be needed,
which I will call trial data, in contrast to untried data, which is data in the buffer that hasn’t
been transmitted yet; hence, the FITO buffer has one input and two output pointers, as
shown in Figure 1.8.

Having loaded “ABCDEFG” in the buffer, data fragments “ABC” and “DE” are sent out
on the network, and the trial pointer is moved up to mark the end of the trail data. “ABC” is
then acknowledged, so the output pointer can be moved up, but the rest of the data is not, so
the unacknowledged data between the output and trial pointers is retransmitted on the net-
work, followed by the remaining untried data. Finally that is all acknowledged, so the output
pointer can be moved up to join the input pointer.

in

Start

out
in

A

out

B C D E F G
'ABCDEFG'

added

in

A

out

B C D E F G
'ABCDE'
removed

in

K

out

L C D E F G H I J
'HIJKL'
added

Buffering 23

Figure 1.8 FITO example.

in

Start

in

A

trial
out

B C D E F G
'ABCDEFG'

added

in

A

trial

B C D E F G
'ABC'
sent

out
in

A

trial

B C D E F G

out

'DE'
sent

in

A

trial

B C D E F G

out

'ABC'
acknowledged

in

A

trial

B C D E F G

out

'FG'
sent

in

A B C D E F G
'DEFG'

acknowledged

trial
out

trial
out

Trial data Untried data

in

A B C D E F GTimeout

trial
out in

A

trial

B C D E F G

out

'DE'
resent

24 Chapter 1: Introduction

A structure stores the data and its pointers (as index values into the data array). The first
word indicates the buffer length, which allows for a variety of buffer sizes. For speed, the
buffer size is constrained to be a power of two.

A default buffer size of 2Kb is provided, which may be overridden if required. This permits a
buffer to be declared as a simple static structure.

Or, consider the code when using dynamically allocated memory.

In both cases, the length value is set when the buffer is created; this is very important if
strange bugs are to be avoided.

The use of LWORD (unsigned 32-bit) buffer pointers with WORD (unsigned 16-bit) data
length may seem strange. The former is part of a Cunning Plan to map the TCP 32-bit
sequencing values directly onto these pointers, whereas the latter permits the code to be com-
piled into a 16-bit memory space (e.g., small model), if necessary. All should become clear in
subsequent chapters.

#ifndef _CBUFFLEN_

#define _CBUFFLEN_ 0x800

#endif

/* Circular buffer structure */

typedef struct

{

 WORD len; /* Length of data (must be first) */

 LWORD in; /* Incoming data */

 LWORD out; /* Outgoing data */

 LWORD trial; /* Outgoing data 'on trial' */

 BYTE data[_CBUFFLEN_]; /* Buffer */

} CBUFF;

#include "netutil.h"

CBUFF rxpkts = {_CBUFFLEN_};

#define BUFFLEN 0x2000

CBUFF *rxp;

if ((rxp = (CBUFF *)malloc(BUFFLEN+16))!=0)

{

 rxp.len = BUFFLEN;

 ...

}

Buffering 25

In creating the buffer-handling software, it is important to retain a clear idea of what is
meant by untried data (not yet sent), and trial data (sent but not acknowledged).

When loading data into the buffer, the simple but slow method is to copy it byte-by-byte.
Instead, I’ll use either one or two calls to a fast block-copy function, depending on whether
the new data wraps around the end of the buffer. If the data is too big for the buffer, it is trun-
cated, because I’m assuming the programmer has checked the free space before calling this
function. The free space is always reported as one byte less than the actual space, so there is
no danger of the input pointer catching up with the output pointer.

/* Return total length of data in buffer */

WORD buff_dlen(CBUFF *bp)

{

 return((WORD)((bp->in - bp->out) & (bp->len - 1)));

}

/* Return length of untried (i.e. unsent) data in buffer */

WORD buff_untriedlen(CBUFF *bp)

{

 return((WORD)((bp->in - bp->trial) & (bp->len - 1)));

}

/* Return length of trial data in buffer (i.e. data sent but unacked) */

WORD buff_trylen(CBUFF *bp)

{

 return((WORD)((bp->trial - bp->out) & (bp->len - 1)));

}

/* Return length of free space in buffer */

WORD buff_freelen(CBUFF *bp)

{

 return(bp->len ? bp->len - 1 - buff_dlen(bp) : 0);

}

/* Set all the buffer pointers to a starting value */

void buff_setall(CBUFF *bp, LWORD start)

{

 bp->out = bp->in = bp->trial = start;

}

/* Load data into buffer, return num of bytes that could be accepted

** If data pointer is null, adjust pointers but don't transfer data */

WORD buff_in(CBUFF *bp, BYTE *data, WORD len)

{

 WORD in, n, n1, n2;

26 Chapter 1: Introduction

Removal of untried data from the buffer, so that it becomes trial data, is essentially the
inverse of the above.

 in = (WORD)bp->in & (bp->len-1); /* Mask I/P ptr to buffer area */

 n = minw(len, buff_freelen(bp)); /* Get max allowable length */

 n1 = minw(n, (WORD)(bp->len - in)); /* Length up to end of buff */

 n2 = n - n1; /* Length from start of buff */

 if (n1 && data) /* If anything to copy.. */

 memcpy(&bp->data[in], data, n1); /* ..copy up to end of buffer.. */

 if (n2 && data) /* ..and maybe also.. */

 memcpy(bp->data, &data[n1], n2); /* ..copy into start of buffer */

 bp->in += n; /* Bump I/P pointer */

 return(n);

}

/* Load string into buffer, return num of chars that could be accepted */

WORD buff_instr(CBUFF *bp, char *str)

{

 return(buff_in(bp, (BYTE *)str, (WORD)strlen(str)));

}

/* Remove waiting data from buffer, return number of bytes */

** If data pointer is null, adjust pointers but don't transfer data */

WORD buff_try(CBUFF *bp, BYTE *data, WORD maxlen)

{

 WORD trial, n, n1, n2;

 trial = (WORD)bp->trial & (bp->len-1); /* Mask trial ptr to buffer area */

 n = minw(maxlen, buff_untriedlen(bp)); /* Get max allowable length */

 n1 = minw(n, (WORD)(bp->len - trial)); /* Length up to end of buff */

 n2 = n - n1; /* Length from start of buff */

 if (n1 && data) /* If anything to copy.. */

 memcpy(data, &bp->data[trial], n1); /* ..copy up to end of buffer.. */

 if (n2 && data) /* ..and maybe also.. */

 memcpy(&data[n1], bp->data, n2); /* ..copy from start of buffer */

 bp->trial += n; /* Bump trial pointer */

 return(n);

}

Buffering 27

Functions to remove data from the buffer are required to complete the set and to wind back
the trial pointer so that the data is waiting for retransmission.

As a useful extra feature, a null data pointer can be given to the function, in which case it
goes through the same motions, but without copying any actual data. This is handy for dis-
carding unwanted data (e.g., trial data that has been acknowledged).

I’ve made extensive use of minw(), which returns the lower of two word values and so is
similar to the standard function min().

Why define my own? Because min() is usually implemented as a macro,

/* Remove data from buffer, return number of bytes

** If data pointer is null, adjust pointers but don't transfer data */

WORD buff_out(CBUFF *bp, BYTE *data, WORD maxlen)

{

 WORD out, n, n1, n2;

 out = (WORD)bp->out & (bp->len-1); /* Mask O/P ptr to buffer area */

 n = minw(maxlen, buff_dlen(bp)); /* Get max allowable length */

 n1 = minw(n, (WORD)(bp->len - out)); /* Length up to end of buff */

 n2 = n - n1; /* Length from start of buff */

 if (n1 && data) /* If anything to copy.. */

 memcpy(data, &bp->data[out], n1); /* ..copy up to end of buffer.. */

 if (n2 && data) /* ..and maybe also.. */

 memcpy(&data[n1], bp->data, n2); /* ..copy from start of buffer */

 bp->out += n; /* Bump O/P pointer */

 if (buff_untriedlen(bp) > buff_dlen(bp))/* ..and maybe trial pointer */

 bp->trial = bp->out;

 return(n);

}

/* Rewind the trial pointer by the given byte count, return actual count */

WORD buff_retry(CBUFF *bp, WORD len)

{

 len = minw(len, buff_trylen(bp));

 bp->trial -= len;

 return(len);

}

WORD minw(WORD a, WORD b)

{

 return(a<b ? a : b);

}

#define min(a, b) (a<b ? a : b)

28 Chapter 1: Introduction

and any function arguments may be executed twice, which is a major problem in interrupt-
driven (reentrant) code. Take a line from buff_out().

The macro expands this to the following.

Imagine that the first time buff_dlen() is executed, the source buffer is almost empty, so
all its data can be transferred into the destination. However, before the function is executed a
second time, an interrupt occurs that fills the buffer with data, so the actual data length cop-
ied exceeds the maximum the destination can accept, with disastrous results. The easiest way
to avoid this problem is to buffer the comparison values in a function’s local variables; hence,
the usage of minw().

Polygonal Buffer
A circular buffer is useful for handling unterminated streams of data, but sometimes you’ll
need to store blocks of known length. The classic case is a packet buffer, in which you can
queue packets prior to transmission or on reception. The standard technique is to have a
buffer pool, from which the storage for individual packets can be allocated. A simpler tech-
nique is to use a circular buffer as before but to prefix each addition to it with a length word,
to show how much data is being added.

The smooth circle of data has been replaced by indivisible straight-line segments; when
recovering the data, check that the whole block is available (if there is a risk that part of the
block may be in transit). The trial system comes in handy because you can retry (i.e., push
back) the length if the entire data block isn’t available yet.

n = minw(maxlen, buff_dlen(bp)); /* Get max allowable length */

n = maxlen < buff_dlen(bp) ? maxlen : buff_dlen(bp);

 if (len>0 && buff_freelen(&rxpkts) >= len+2)/* If space in circ buffer..*/

 {

 buff_in(&rxpkts, (BYTE *)&len, 2); /* Store data len.. */

 buff_in(&rxpkts, buff, len); /* ..and data */

 }

 if ((dlen=buff_dlen(&txpkts)) >= 2)

 {

 buff_try(&txpkts, (BYTE *)&len, 2); /* Get length */

 if (dlen >= len+2) /* If all there.. */

 {

 buff_out(&txpkts, 0, 2); /* ..remove len */

 buff_out(&txpkts, buff, len); /* ..and data */

 }

 else

 buff_retry(&txpkts, 2); /* Else push back len */

 }

Coding Conventions 29

This explains the length parameter on the front of the generic frame. It allows you to store
and retrieve GENFRAME structures from circular buffers without having to understand the con-
tents of the frame.

Coding Conventions
It isn’t essential that you use the same coding conventions (source code formatting) as I do,
though it may help if I describe the rules I’ve used, so you can choose whether to follow them
or not.

Data Types
When defining protocol structures, it is really important to use the correct data width. You
may be used to assuming that an int is 16 bits wide, but that isn’t true in a 32-bit system. I’ve
made the following assumptions for all the DOS compilers.
• char is an 8-bit signed value
• short is 16 bits
• long is 32 bits

From these, I have derived the following width-specific definitions.

I have used #define in preference to typedef because compilers use better optimization strat-
egies for their native data types. A notable omission is a Boolean (TRUE/FALSE) data type; I use
an integer value and assume TRUE is any non-zero value.

Keeping compatibility with both 16- and 32-bit compilers also necessitates the addition of
some redundant-looking typecasts.

If the typecast is omitted, the Visual C++ compiler issues a warning message because b is pro-
moted to a 32-bit value for the addition, which must be truncated when assigned to a.

Another tendency of 32-bit compilers is, by default, to pad data elements out to four- or
eight-byte boundaries, which blows gaping holes in the structures.

If the mix of bytes, words, and long words is to be transmitted on the network, it is vital that
the compiler is set so that it does not introduce any padding between these structure elements;
that is, the structure member alignment is one byte, not four or eight bytes.

#define BYTE unsigned char

#define WORD unsigned short

#define LWORD unsigned long

WORD a, b;

a = (WORD)(b + 1);

typedef struct {

 BYTE a;

 BYTE b;

 LWORD c;

 WORD d;

} MYSTRUCT;

30 Chapter 1: Introduction

All the necessary configuration data is included in the appropriate compiler-specific
project file, so should be loaded automatically. The PICmicro cross-compiler is very different
from all the others; its peculiarities are explored in Chapter 9.

Source Code Format
I have attempted to illustrate all the techniques in this book by embedding source code frag-
ments in the text. Because the full source code is included on the accompanying CD and you
won’t be retyping the code from the book, I have used some artistic license in the preparation of
these fragments by stripping out all nonessential stuff so the essence of the code is clear to see.

You will see frequent ellipses (…) indicating deletion of the lines I think are irrelevant to
the topic under discussion. If the absence of these items hinders your comprehension of the
text, I suggest you print out a copy of the latest source code and use that in conjunction with
this book.

Also, the version printed in the book is not necessarily the latest version. All released ver-
sions of the software have revision headers, containing entries as follows.

The version number of the complete utility is taken from the version number of the file bear-
ing its name. For example, if test.exe is built from utils.c v0.12, test.c v1.23, and
driver.c v2.34, then MYTEST has the overall version number v1.23. To confirm the build sta-
tus, each project has a CRC file containing the file names, version numbers, and a 32-bit CRC
for each file.

Project PING v0.17 archived 24-Mar-00 11:49

ether3c.c 6376B05D v0.05
etherne.c 9759AE0A v0.24
ip.c C3BB52D4 v0.10
net.c 1EB2A188 v0.07
netutil.c 73320977 v0.11
ping.c B66F030C v0.17
pktd.c 183DCB73 v0.09
serpc.c DD6477B8 v1.08

ether.h 4FF45517
ip.h C739761D
net.h C19A2BBD
netutil.h B8B96B7F
pktd.h 0ACBA7F6
serpc.h 089DEAF1

The Iosoft Ltd. Web site (www.iosoft.co.uk) has up-to-date versions of the software in
this book and useful extra information, such as application notes.

/*

** v0.01 JPB 1/1/00 First version

** v0.02 JPB 2/1/00 Added widget-handling option

*/

31

2

Chapter 2

Introduction to Protocols:

SCRATCHP

Overview

In this chapter, I start by looking at what a protocol is, then I show how it can be imple-
mented in software. I’ll examine
• the definition of a protocol,
• the standard way of describing a protocol,
• the client–server model,
• modal and modeless clients, and
• logical connections — open, close, and data transfer

Because this is a hands-on book, I’ll illustrate these points by creating a protocol from
scratch (called SCRATCHP) and writing a utility that allows you to exercise the protocol.
While implementing the protocol, you’ll have an opportunity to explore the following areas.
• Storage of Ethernet and SLIP frames
• Ethernet addressing
• Protocol identification
• Byte swapping
• Low-level packet transmission and reception

32

Chapter 2: Introduction to Protocols: SCRATCHP

You’ll end up with a stand-alone utility that can be used to exercise the protocol that’s been
created, or it can be used as a base for implementing another protocol. The foundations will
have been laid for the TCP/IP protocols to come.

Protocol

For two computers to communicate, they must speak the same language. A communication
language framework is generally called a

protocol

. The name is derived from the framework
employed by diplomats when attempting to communicate across cultural boundaries. Two
computers may employ different processors, languages, and operating systems, but if they
both use a common protocol, then they can communicate.

Protocols don’t just enable communications, they also restrict them. Neither party may
stray outside the bounds of protocol without facing incomprehension or rejection. So a proto-
col doesn’t just define how communication may occur but also provides a framework for the
information that is communicated. But how can any one protocol encompass all the variety
of present-day computer communications? It can’t, so you need a family of protocols, each of
which is designed for a specific task. As with a software project, you need a tree structure,
with the simpler network-oriented tasks at the bottom and the higher user-oriented tasks at
the top. Such a structure is often called a protocol

stack

, though this leads to confusion with
the last in, first out (LIFO, push/pop, or call/return) stack data storage mechanism also used
by programmers.

Here, the term stack refers to the way protocol components are stacked on top of each
other to give the desired functionality. If I want to transfer a file, I might take a standard file
transfer protocol and stack it on top of a communications protocol. The communications
protocol wouldn’t understand about files — it simply moves bocks of data around. Con-
versely, the file transfer protocol wouldn’t understand about networks — it simply converts
files into blocks of data. Combine the two, and you have network file transfer capability.

The separation into protocol layers doesn’t necessarily make for easier reading. Older pro-
tocol specifications used to simply record the pattern of “bytes on the wire” for achieving a
given result (and also, if you’re lucky, a smattering of timing information). In a layered world,
a protocol specification must tie down the upper and lower application programming inter-
faces (APIs) and the operations to be performed on them. Any relation to bytes on the wire
(i.e., actual visible work) is purely coincidental. There is the danger that the APIs may become
operating system–specific, so vendor-independent standardization is very important.

Standardization

The international community, in its wisdom, decided to standardize on the number of proto-
col layers in a stack, and the International Standards Organization (ISO) Open Systems Inter-
connection (OSI) model was born (Figure 2.1). Their layers are listed below from top down.

7. ApplicationUser interface

6. PresentationData formatting

5. SessionLogical connections

4. TransportError-free communication

3. NetworkNetwork addressing

Protocol

33

2. Data linkTransmission and reception

1. PhysicalNetwork hardware

For local area networks (LANs), the data link layer is further subdivided into a compo-
nent called medium access control (MAC), which resides within the network hardware, and
the software-based logical link control (LLC), which provides a uniform software interface
(packet driver interface) to the higher levels.

Figure 2.1 OSI seven-layer model.

When two applications are communicating over a network, it can be useful to think in
terms of the data entering at the top of one protocol stack then traveling downward on that
machine, across to the other machine at the physical layer, and back up the second stack (Fig-
ure 2.2).

Of course, not all data will originate at application level: resolving addresses requires
communication between network layers, and maintenance of a connection requires session-
to-session communications. The user is generally unaware of these until he or she happens to
see a diagnostic log of all packet transfers; then the reaction is one of amazement that a sim-
ple transfer between applications can generate so much traffic. As with a duck crossing a
pond, the smooth visible motion belies the furious paddling underneath.

The TCP/IP family of protocols predates the ISO standardization effort, so it does not fit
comfortably within the model. Also, the higher layers are remarkably difficult to standardize
because they must encompass the totality of network applications. Confronted by the
remarkable growth of the Internet, this overall ISO standardization effort has been com-
pletely sidelined, though the seven-layer terminology and the lower level standards are still in
widespread use. Although I’ll implement SCRATCHP as a single protocol, the seven-layer
model does provide important pointers on how your software might be structured.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Logical Link Control

Medium Access control

34

Chapter 2: Introduction to Protocols: SCRATCHP

Figure 2.2 Application-to-application transfer.

SCRATCHP Services

Just as an operating system offers the user a range of commands, so SCRATCHP will offer
the network user a range of services (i.e., remotely accessible functions). The usual TCP/IP
approach is to create a separate specification for each service, but to save time, I’ll combine
several services into the one protocol. I’ll start with a minimum of these, but the protocol
must permit the addition of services at a later date. A preliminary list of services is

1.

IDENT

 (ID resolution)
2.

ECHO

 (connection diagnostic)
3.

DIR

 (file directory)
4.

GET

 (file transfer: read)
5.

PUT

 (file transfer: write)

The

ident

 service is used for converting computer IDs into addresses and is explained
later. The

echo

 service allows simple diagnostic tests to be performed. It duplicates incoming
data and returns it to the sender. In this way, you can check response times and error rates.
File transfer is a fundamental requirement of computer networking and is useful for examin-
ing bulk data transfer techniques. I have provided simple

dir

,

get

, and

put

 functions.

Client–Server Model

A useful piece of terminology would be to refer to one machine (the requester of the service)
as a

client

 and the other (the provider of the service) as the

server

. In reality, you might as well
write the software so that every machine has the potential to become a client or a server and
use keyboard or network commands to determine which mode should be activate at any time.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

PhysicalNetwork

SCRATCHP Services

35

The

ident

 service is used to identify potential servers, so it must be as simple as
possible — one packet transmitted and one packet received. The command is sent as a string,
followed by an optional argument string. If a server responds, it returns a copy of the com-
mand string to confirm which command it is responding to.

A potential problem is that the response is indistinguishable from the command, so it may
be interpreted as another command, generating another response, and so on ad infinitum.
There are two approaches to solving this problem: one modal, the other modeless.

Modal Client

Every time a client issues a command, it could go into some sort of command mode, so it
knows the next communication it receives is going to be a response to that command. This
mode would typically be stored as a state variable. The transaction would be:

1. client goes into command mode and
2. client sends command to server; then,

either

3. client receives response and goes back into normal mode

or

3. client receives no response, times out, and goes back into normal mode.

There are two risks with this approach.

1. The client time-out occurs while the response is still in transit, so it is no longer in com-
mand mode when it arrives.

2. While in command mode, the client receives an unexpected packet from another node,
which it can’t handle because it is in the wrong mode.

Modal techniques are frequently used in simple point-to-point serial links, but they must
be used with care in networking, where it is impossible to anticipate what will happen next.

Modeless Client

If you want to keep your client as modeless (i.e., stateless) as possible, you must include more
information in the data packet that is transmitted. Instead of sending pure data and storing
the command mode

internally

, the transmitted packet must contain an indication that says, “I
am a command packet.” The server’s reply packet must then have a different indication that
says, “I am a response packet.” By expressing the information

externally

, the client doesn’t
have to store it internally, and debugging is made easier because you can determine the client’s
intentions by examining the packets it has sent, rather than having to pry on its internal data.

It is interesting to note that one of the key factors in the success of the World Wide Web
has been that the upper protocol layers are stateless. At any one time a Web server may be
handling hundreds of clients, and in the course of a day it may handle millions. If it had to
keep detailed information on each, there would be a major storage problem. A simple Web
server stores no information about any user. Contrast this with a typical multiuser system,
where a large number of settings and preferences are stored in an individual user’s account.

So, keep the

ident

 command stateless for simplicity, but what about the file transfer com-
mands? If you’re going to handle bulk data transfers, it is hard to keep the machines com-
pletely stateless. If nothing else, they have to remember which files they have opened and

36

Chapter 2: Introduction to Protocols: SCRATCHP

why. Ideally, the network would be treated as a simple

pipe

, through which data would flow
(or stream).

For this, you really need to establish a

logical connection

, or bidirectional

data pipe

between the client and server: anything fed in one end of the pipe will emerge unaltered at the
other end. This is an important concept, which is much used in networking.

Logical Connections

From the earliest days, networks have usually been used for the purpose of establishing logi-
cal connections between two computers. When you use a browser to contact a Web site, you
are setting up one or more logical connections between your client and their server. The Web
pages and graphics are then fed down these connections, like water down a pipe, until the cli-
ent has all the necessary data to display the page.

Logical connections are reliable. To maintain the connection, the protocol software has to
keep track of all packets sent and received and have a retry strategy to cover any packets that
go astray. Unfortunately, this reliability comes at a price: writing the protocol software for
opening, maintaining, and closing logical connections is a nontrivial task, involving the cre-
ation of state machines in both client and server and an exchange of signals between them to
ensure the state machines remain in sync.

You may spot an apparent contradiction with my previous assertion that Web client–
server communications are stateless. Clearly they must keep state information about each
other for the duration of a transfer. That’s why I was careful to say their

applications

 are
stateless; the lower levels are continuously making and breaking connections, with all the
state tracking that entails.

Opening and Closing a Connection

In a simplified protocol, clients have to initiate all actions, so they will request a service that
requires the establishment of a connection. The host can then agree to the establishment of a
connection by acknowledging the request, ignoring the request if it disagrees, or setting an
error flag (it may have insufficient resources to support another connection).

Closure of the connection may be initiated by either party. In a file transfer, it will normally
be the sender of the data who closes the connection after the data is transferred; although, the
recipient may also do this if it can’t handle the data any more (e.g., its disk is full).

Data Flow in a Connection

For the duration of the connection, data may flow bidirectionally between the two parties.
Both sides need to keep track of the amount of data sent and received to ensure no data has
been skipped or duplicated. Commonly used techniques to do this are listed below.

Lock-step

One packet is sent, and the sender waits until an acknowledgment is received
before sending another.

Block sequencing

Each packet contains one data block, with a sequential number
(sequence number). The recipient may acknowledge receipt of each block, using its sequence

Logical Connections

37

number, or wait until a few have been received then acknowledge them all, using the sequence
number of the latest block.

Byte sequencing

This is similar to block sequencing, but the sequence number reflects the
byte count, rather than the block count.

Figure 2.3 Sequencing methods.

Figure 2.3 shows the client–server interactions, assuming the client is sending 11 bytes in
three blocks to the server. The lock-step method doesn’t need to identify each block individu-
ally, since only one can be in transit at any one time (in railway parlance: one engine in
steam). The sequencing methods differ in that they identify a block using either an increment-
ing block number or the total number of bytes sent prior to the current block. The acknowl-
edgment reflects either the latest block received or the latest byte received (i.e., the sequence
number plus the byte count).

A B C D

Lock-stepClient

Block

Server

ACK

E F GBlock ACK

H I J KBlock ACK

A B C D

Block sequencingClient

Block 1

Server

ACK 1

E F GBlock 2

H I J KBlock 3 ACK 3

A B C D

Byte sequencingClient

SEQ 0

Server

ACK 4

E F GSEQ 4

H I J KSEQ 7 ACK 11

(delaying ACK)

(delaying ACK)

38

Chapter 2: Introduction to Protocols: SCRATCHP

For simplicity, I have shown the first block as having a byte count of zero. In reality, it is
better to start with a pseudorandom base value, which is negotiated at the start of the trans-
action and is subsequently increased to reflect the actual byte count transferred. The value is
typically stored as a 32-bit

LWORD

 and is allowed to wrap around past zero when it gets too
large, on the assumption that there won’t be several gigabytes of data in transit for any one
transaction at any one time.

Note that the lock-step method has built-in flow control: the sender cannot out-pace the
receiver because the receiver will only acknowledge if it has spare buffer space for the next
data block. Flow control can be added to the other techniques by the simple expedient of
placing a limit on the maximum number of blocks (or bytes of data) that can be in transit and
unacknowledged. When the sender exceeds this “window,” it must stop transmitting data
until it receives an acknowledgment.

There is little to choose between the two sequencing methods. Block acknowledgment is
used in the ISO link layer LLC and is slightly easier to implement than byte sequencing, pro-
vided a fixed block size is used. TCP has a variable block size (a “sliding window”), so it
employs a byte-sequencing method. This is what I’ll use for SCRATCHP.

Packet Format

Having decided on the basic structure of transactions, I can define a packet format to suit
(Figure 2.4). Because of my minimalist approach, there is relatively little in it.
• protocol version (one byte)
• flags (one bit each)

• command
• response
• start connection
• connected
• stop connection
• error

• sequence and acknowledgment numbers (four bytes each)
• data length (two bytes)

Figure 2.4 SCRATCHP packet format.

The

protocol version

 is a useful way of retaining compatibility as SCRATCHP evolves. It
can be checked by any recipient to ensure that it is equipped to decode this version of the pro-
tocol and to give the user sensible error messages if there is a problem (e.g., “This utility does
not support SCRATCHP version 5”).

Version
1 byte

Flags
1 byte

Seq
4 bytes

Data
0 - 1488 bytes

Datalen
2 bytes

Ack
4 bytes

12 - 1500 bytes

Packet Format

39

The

data length

 field may seem redundant, since the underlying network protocol should
provide an overall length value from which the data length could be derived. Unfortunately,
the Ethernet frame length will include any padding applied to undersized frames, so it won’t
always give the correct answer.

In common with most other Ethernet protocols, the integer values will be sent with the
most significant byte first. The SCRATCHP data array is dimensioned at 994 bytes, which
allows it to fit within the 1,500-byte Ethernet or 1,006-byte SLIP data area.

Internal Storage

Having fixed the external appearance of the SCRATCHP packet, I need to decide the internal
storage format. You will recall that my network drivers work on a generic frame format,
which has a two-byte frame type (which will identify whether it is an Ethernet or SLIP packet
and maybe provide a system-specific handle for the network adaptor), followed by a block of
data up to the maximum Ethernet frame size.

/* Flag values */

#define FLAG_CMD 0x01 /* Data area contains command */

#define FLAG_RESP 0x02 /* Data area contains response */

#define FLAG_START 0x04 /* Request to start connection */

#define FLAG_CONN 0x08 /* Connected; sequenced transfer in use */

#define FLAG_STOP 0x10 /* Stop connection */

#define FLAG_ERR 0x20 /* Error; abandon connection */

/* SCRATCHP packet header */

typedef struct {

 BYTE ver; /* Protocol version number */

 BYTE flags; /* Flag bits */

 LWORD seq; /* Sequence value */

 LWORD ack; /* acknowledgment value */

 WORD dlen; /* Length of following data */

} SCRATCHPHDR;

/* SCRATCHP packet */

#define SCRATCHPDLEN 994

typedef struct {

 SCRATCHPHDR h; /* Header */

 BYTE data[SCRATCHPDLEN]; /* Data (or null-terminated cmd/resp string) */

} SCRATCHPKT;

40

Chapter 2: Introduction to Protocols: SCRATCHP

The SCRATCHP packet will be contained within the data area of an Ethernet or SLIP
packet (Figure 2.5).

Figure 2.5 Ethernet and SLIP packets.

Because Ethernet and SLIP packets have different header lengths (14 bytes and zero bytes),
you need a standard way of determining where the network header ends and the SCRATCHP
packet starts. A function can do this by checking the packet type and indexing into the packet
data area accordingly.

Note that a pointer to the frame

data

 area also points to the SCRATCHP

header

, and a
pointer to the SCRATCHP

data

 area may also point to a command

header

. In this nested
world, one packet’s data is generally another packet’s header, so the term “data” must always
be qualified by the context in which it appears.

There are other awkward differences between Ethernet and SLIP: the former has a source
address, which will be useful when sending a reply, and a protocol-type identifier, which is
discussed later. Any functions attempting to access these features need to check the packet
type first.

typedef struct {

 GENHDR g; /* General-pupose frame header */

 BYTE buff[MAXGEN]; /* Frame itself (2 frames if fragmented) */

} GENFRAME;

Dest Srce Pcol Ver Flag Seq Ack

Ethernet

SLIP

DataDlen

Ver Flag Seq Ack DataDlen

/* Get pointer to the data area of the given frame */

void *getframe_datap(GENFRAME *gfp)

{

 return(&gfp->buff[dtype_hdrlen(gfp->g.dtype)]);

}

/* Return frame header length, given driver type */

WORD dtype_hdrlen(WORD dtype)

{

 return(dtype&DTYPE_ETHER ? sizeof(ETHERHDR) : 0);

}

Packet Format

41

/* Get pointer to the source address of the given frame, 0 if none */

BYTE *getframe_srcep(GENFRAME *gfp)

{

 ETHERHDR *ehp;

 BYTE *srce=0;

 if (gfp->g.dtype & DTYPE_ETHER) /* Only Ethernet has address */

 {

 ehp = (ETHERHDR *)gfp->buff;

 srce = ehp->srce;

 }

 return(srce);

}

/* Copy the source MAC addr of the given frame; use broadcast if no addr */

BYTE *getframe_srce(GENFRAME *gfp, BYTE *buff)

{

 BYTE *p;

 p = getframe_srcep(gfp);

 if (p)

 memcpy(buff, p, MACLEN);

 else

 memcpy(buff, bcast, MACLEN);

 return(p);

}

/* Get pointer to the destination address of the given frame, 0 if none */

BYTE *getframe_destp(GENFRAME *gfp)

{

 ETHERHDR *ehp;

 BYTE *dest=0;

 if (gfp->g.dtype & DTYPE_ETHER) /* Only Ethernet has address */

 {

 ehp = (ETHERHDR *)gfp->buff;

 dest = ehp->dest;

 }

 return(dest);

}

42

Chapter 2: Introduction to Protocols: SCRATCHP

Using these functions, you can safely access the address and protocol fields on all packets,
even though SLIP frames don’t possess them. This avoids the necessity for frame-specific fea-
tures in the SCRATCHP code layer, since all frames can be treated equally.

Addressing

I have already talked about the client contacting the server, but I have given no indication
as to how this is achieved. How are the client and server identified so that they can contact
each other? Of course, the server can simply respond to the address of any client that contacts
it, but there is still the burden on the client to make the initial contact, and to do that, it needs
some way of addressing the host, since there might be multiple hosts on the network.

Each Ethernet card has a unique six-byte

physical address

, so the client could use that. But
imagine the complaints from the users if they have to type a 12-digit hexadecimal number
every time they want to contact a new host. Also, the number would be highly specific to that
item of hardware. If the network card failed and had to be replaced, the number would
change, even though the computer still seemed to be the same from the user’s point of view.

/* Copy destination MAC addr of the given frame; use broadcast if no addr */

BYTE *getframe_dest(GENFRAME *gfp, BYTE *buff)

{

 BYTE *p;

 p = getframe_destp(gfp);

 if (p)

 memcpy(buff, p, MACLEN);

 else

 memcpy(buff, bcast, MACLEN);

 return(p);

}

/* Get the protocol for the given frame; if unknown , return 0 */

WORD getframe_pcol(GENFRAME *gfp)

{

 ETHERHDR *ehp;

 WORD pcol=0;

 if (gfp->g.dtype & DTYPE_ETHER) /* Only Ethernet has protocol */

 {

 ehp = (ETHERHDR *)gfp->buff;

 pcol = ehp->ptype;

 }

 return(pcol);

}

Protocol Identification

43

It is far better to assign each computer on the network a

logical address

 then invent some
scheme to map the logical address onto the physical address of the Ethernet card. For conve-
nience, I will refer to the logical address as the Ident (ID) of the computer and the physical
address as the

address

. The logical-to-physical mapping process is called

address resolution

.
What is an ID, and where does it come from? An ID can be numeric (

123

) or a null-termi-
nated string (

fileserver

). I’ll use the latter format for maximum flexibility. It must either be
permanently burned into the software when it is created (a nuisance, since all nodes on the
network would have to run different copies of the software) or read when the software is
loaded — either from the command line or from a configuration file. Either way, it is essential
that each computer on the network acquires a unique ID.

To resolve an ID into an address, the client must broadcast the ID on the network as an
invitation for the designated server to respond. The server responds, giving its physical
address, which the client stores and uses for all subsequent communications.

Figure 2.6 Sample ident transactions.

Figure 2.6 shows a client broadcasting an identification request for the machine node1,
using two null-terminated strings in the SCRATCHP data area — the null character is indi-
cated by a strikethrough of the box. The client receives a reply containing a duplicate of the
request, with the all-important node address, which will be used for subsequent communica-
tions. The second transaction illustrates the use of a null ident string to identify all nodes on
the (hopefully very small) network. Two responses are obtained in a pseudorandom order.
There is no knowing which node will answer first.

Protocol Identification
Ethernet is capable of carrying several protocols at the same time without the risk of confu-
sion over which data belongs to which protocol. It achieves that by tagging each frame with a
16-bit protocol type, which uniquely identifies that protocol; for example, Internet Protocol
(IP) has a hexadecimal value of 800h. If SCRATCHP was intended to coexist with other pro-
tocols, you would need to obtain an official protocol identifier from the Institution of Electri-
cal and Electronic Engineers (IEEE). At the time of writing, this cost $5,000; however,
SCRATCHP should only be run on a “scratch” network, so you can use any identifier you

T n o

From Command

123456789ABC FFFFFFFFFFFF

To Data

d e 1

123456789ABC3456789ABCDE

NEDI

T n o d e 1NEDI

T123456789ABC FFFFFFFFFFFF

123456789ABC456789ABCDEF

NEDI

T n o d e 2NEDI

123456789ABC3456789ABCDE T n o d e 1NEDI

44 Chapter 2: Introduction to Protocols: SCRATCHP

like. Prudence dictates you should pick a high number that is out of the range of currently
assigned protocols, so the hexadecimal value FEEBh is used.

Multiplexing and Buffering
The software that gathers transmit packets from a variety of senders is a multiplexer (mux,
for short), and the corresponding software that accepts received packets and dispatches them
to the appropriate recipient is called a demultiplexer (demux, for short).

Figure 2.7 Data flow between nodes.

The mux/demux operation (Figure 2.7) is automatically performed by the network driver
layer. Submitting a packet to put_net() automatically routes it to the appropriate network
driver, possibly via a (polygonal, as described in the previous chapter) packet buffer, if the
interface doesn’t have its own Transmit buffer. All received packets are stored in a similar
polygonal incoming packet buffer.

Control flow, as shown in Figure 2.8, is more convoluted since there must be some provi-
sion for polling the network interfaces, as they may be interrupt-driven.

The receive_ether() and receive_slip() functions take the place of Ethernet and serial
interrupt handlers, in that they are called from get_net(), call get_ether() or get_slip()
for each packet received, then do an up-call to save the packet, which in turn uses the stan-
dard circular buffer input routine (Figure 2.8). Having done that, get_net() calls the buffer
output routine to fetch any stored packets.

If interrupts are available, the two receive_ functions are redundant, and the interrupt
handlers call the get_ functions directly.

Packet buffer

Sender Receiver

Packet demux

put_net()

Network drivers

Application data buffer

Packet buffer

Packet mux

get_net()

Network drivers

Application data buffer

Protocol Identification 45

Figure 2.8 Control flow for packet reception.

Byte Swapping
SCRATCHP will normally run on a little endian (least significant byte first) PC architecture,
so it was tempting to use this storage method for the two-byte values in the SCRATCHP
packets. However, most Ethernet protocols use big endian (most significant byte first) storage,
and I wanted to explore byte-swapping issues, so I made SCRATCHP little endian. If you
happen to run my software on a little endian machine, then the byte-swapping stage must be
skipped (preferably using conditional compilation), but the underlying software structure
remains the same.

I have seen protocol software that is liberally sprinkled with byte swap functions, which is
a nightmare to debug because you’re never quite sure whether a value is in its swapped or
unswapped state. To avoid this, you have to have a byte-swapping philosophy and stick rig-
idly to it. My philosophy is that byte swapping is the last action to be performed when send-
ing a packet and the first action to be performed when receiving a packet.

This means that a transmit packet, that has been byte swapped is only fit for transmission:
it may not be used for other purposes such as diagnostic printouts because the printout func-
tion won’t display the swapped values correctly. After transmission, a transmit packet must
be discarded because it is useless; on the relatively rare occasions a retransmission is required,
the packet can easily be rebuilt from the original data. This approach also helps to minimize
the storage requirements and forces you to think clearly about a retry strategy, rather than
relying on resending old packets that happen to be around. This rigorous approach is perhaps
slightly too dogmatic and inflexible for a simple protocol such as SCRATCHP, but it prepares
the ground for the more complex protocols to come.

receive_ether()

get_net()

receive_upcall()

receive_slip()

buff_in() buff_out()

get_ether()

get_slip()

46 Chapter 2: Introduction to Protocols: SCRATCHP

Reception and Transmission
When a packet is received, do the necessary testing and byte swapping then forward it to
do_scratchp() for action.

To economize on storage, do_scratchp() reuses the Receive buffer as a Transmit buffer to
hold any response it wants to make and simply returns a transmit length value, or 0 if no
response has been generated.

/* Demultiplex incoming packets */

int get_pkts(GENFRAME *nfp)

{

 int rxlen, txlen=0;

 if ((rxlen=get_frame(nfp)) > 0) /* If any packet received.. */

 {

 if (is_scratchp(nfp, rxlen)) /* If SCRATCHP.. */

 {

 swap_scratchp(nfp); /* ..do byte-swaps.. */

 txlen = do_scratchp(nfp, rxlen, 0); /* ..action it.. */

 }

 } /* ..and maybe return a response */

 return(txlen); /* (using the same pkt buffer) */

}

/* Check Ethernet frame, given frame pointer & length, return non-0 if OK */

int is_ether(GENFRAME *gfp, int len)

{

 int dlen=0;

 if (gfp && (gfp->g.dtype & DTYPE_ETHER) && len>=sizeof(ETHERHDR))

 {

 dlen = len - sizeof(ETHERHDR);

 swap_ether(gfp);

 }

 return(dlen);

}

/* Make a frame, given data length. Return length of complete frame

** If Ethernet, set dest addr & protocol type; if SLIP, ignore these */

int make_frame(GENFRAME *gfp, BYTE dest[], WORD pcol, WORD dlen)

{

 ETHERHDR *ehp;

Reception and Transmission 47

 if (gfp->g.dtype & DTYPE_ETHER)

 {

 ehp = (ETHERHDR *)gfp->buff;

 ehp->ptype = pcol;

 memcpy(ehp->dest, dest, MACLEN);

 swap_ether(gfp);

 dlen += sizeof(ETHERHDR);

 }

 return(dlen);

}

/* Byte-swap an Ethernet frame, return header length */

void swap_ether(GENFRAME *gfp)

{

 ETHERFRAME *efp;

 efp = (ETHERFRAME *)gfp->buff;

 efp->h.ptype = swapw(efp->h.ptype);

}

/* Check SLIP frame, return non-zero if OK */

int is_slip(GENFRAME *gfp, int len)

{

 return((gfp->g.dtype & DTYPE_SLIP) && len>0);

}

/* Check for SCRATCHP, given frame pointer & length */

int is_scratchp(GENFRAME *nfp, int len)

{

 WORD pcol;

 /* SLIP has no protocol field.. */

 pcol = getframe_pcol(nfp); /* ..so assume 0 value is correct */

 return((pcol==0 || pcol==PCOL_SCRATCHP) && len>=sizeof(SCRATCHPHDR));

}

/* Byte-swap an SCRATCHP packet, return header length */

int swap_scratchp(GENFRAME *nfp)

{

 SCRATCHPKT *sp;

 sp = getframe_datap(nfp);

 sp->h.dlen = swapw(sp->h.dlen);

48 Chapter 2: Introduction to Protocols: SCRATCHP

Transmission is a fill-in-the-blanks exercise, followed by the necessary byte swaps.

 sp->h.seq = swapl(sp->h.seq);

 sp->h.ack = swapl(sp->h.ack);

 return(sizeof(SCRATCHPHDR));

}

/* Make a SCRATCHP packet given command, flags and string data */

int make_scratchpds(GENFRAME *nfp, BYTE *dest, char *cmd,

 BYTE flags, char *str)

{

 return(make_scratchp(nfp, dest, cmd, flags, str, strlen(str)+1));

}

/* Make a SCRATCHP packet given command, flags and data */

int make_scratchp(GENFRAME *nfp, BYTE *dest, char *cmd, BYTE flags,

 void *data, int dlen)

{

 SCRATCHPKT *sp;

 ETHERHDR *ehp;

 int cmdlen=0;

 sp = (SCRATCHPKT *)getframe_datap(&genframe);

 sp->h.ver = SCRATCHPVER; /* Fill in the blanks.. */

 sp->h.flags = flags;

 sp->h.seq = txbuff.trial; /* Direct seq/ack mapping.. */

 sp->h.ack = rxbuff.in; /* ..to my circ buffer pointers! */

 if (cmd)

 {

 strcpy((char *)sp->data, cmd); /* Copy command string */

 cmdlen = strlen(cmd) + 1;

 }

 sp->h.dlen = cmdlen + dlen; /* Add command to data length */

 if (dlen && data) /* Copy data */

 memcpy(&sp->data[cmdlen], data, dlen);

 if (nfp->g.dtype & DTYPE_ETHER)

 {

 ehp = (ETHERHDR *)nfp->buff;

 ehp->ptype = PCOL_SCRATCHP; /* Fill in more blanks */

 memcpy(ehp->dest, dest, MACLEN);

 }

Implementation 49

Implementation
If you have read the first chapter, you’ll not be surprised that I’m about to embark on a states-
and-signals exercise. The software receives the following signals.
• User (keystrokes)
• Network (packets)
• Timer (time-outs)
• Null (idle)

When it receives one of these, it may take any or none of the following actions.
• Change state
• Send a packet
• Update user display

 diaghdrs[diagidx] = sp->h; /* Copy hdr into diagnostic log */

 diaghdrs[diagidx].ver = DIAG_TX;

 diagidx = (diagidx + 1) % NDIAGS;

 return(sp->h.dlen+sizeof(SCRATCHPHDR)); /* Return length incl header */

}

/* Transmit a SCRATCHP packet. given length incl. SCRATCHP header */

int put_scratchp(GENFRAME *nfp, WORD txlen)

{

 int len=0;

 if (txlen >= sizeof(SCRATCHPHDR)) /* Check for min length */

 {

 if (pktdebug)

 {

 printf ("Tx ");

 disp_scratchp(nfp);

 printf(" ");

 }

 swap_scratchp(nfp); /* Byte-swap SCRATCHP header */

 if (is_ether(nfp, txlen+sizeof(ETHERHDR)))

 txlen += sizeof(ETHERHDR);

 txcount++;

 len = put_net(nfp, txlen); /* Transmit packet */

 }

 return(len);

}

50 Chapter 2: Introduction to Protocols: SCRATCHP

I’ll start with the simplest command, ident, which is completely stateless.

ident Command
When the user presses the I key, a broadcast Ident packet is emitted. If any responses are
received, the software displays them as part of its normal idle-state network polling.

First, I have a main loop that translates the key press into a signal.

The user key press is translated into a key signal, SIG_USER_IDENT. This signal is bounced
straight through the application code, do_apps(), without change (more on this function
later). It is then sent to the main SCRATCHP state machine, do_scratchp(), to be translated
into a network packet.

GENFRAME *nfp;

WORD txlen;

...

nfp = &genframe; /* Open net driver.. */

nfp->ftype = frametype = open_net(netcfg); /* ..get frame type */

...

int i, keysig, connsig, sstep=0;

while (cmdkey != 'Q') /* Main command loop.. */

{

 txlen = keysig = connsig = 0;

 if (sstep || kbhit()) /* If single-step or keypress..*/

 {

 k = getch(); /* ..get key */

 if (sstep)

 timeout(&errtimer, 0); /* If single-step, refresh timer */

 cmdkey = toupper(k); /* Decode keystrokes.. */

 switch (cmdkey) /* ..and generate signals */

 {

 case 'I': /* 'I': broadcast ident */

 if (connstate != STATE_CONNECTED)

 printf("Broadcast ident request\n");

 keysig = SIG_USER_IDENT;

 break;

 }

 }

}

connsig = do_apps(&rxbuff, &txbuff, keysig);

txlen = do_scratchp(nfp, 0, connsig);

put_scratchp(nfp, txlen); /* Transmit packet (if any) */

Implementation 51

The packet (in the buffer indicated by network frame pointer nfp) is then transmitted by
put_scratchp().

So what happens when you press the I key? With a bit of luck, your first packet is sent on
the network. If you’re fortunate enough to possess a protocol analyzer (which captures and
displays all network traffic), you might see a display similar to this.

Packet #1
 Packet Length:64
 Ethernet Header
 Destination: FF:FF:FF:FF:FF:FF Ethernet Broadcast
 Source: 00:C0:26:B0:0A:93 Rack2
 Protocol Type:0xFEEB
 Packet Data:
............iden 01 01 00 00 00 00 00 00 00 00 00 07 69 64 65 6E
t............... 74 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
.............. 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This is the actual byte stream on the network. The analyzer doesn’t understand the packet
contents, so some manual decoding is necessary. The six-byte Ethernet addresses are unique
to each adaptor, so yours should not be the same as mine! The analyzer has identified the
node name as Rack2, which, not coincidentally, is the same ID name as in the SCRATCHP
configuration file.

The actual data is below the 64-byte minimum frame size, so there is a significant amount
of padding. You can see the protocol version number (01) followed by the command flag (01).
Skipping the four-byte sequence and acknowledgment numbers, there is a length value of seven

int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{

 ...

 if (connstate == STATE_IDLE) /* If idle state.. */

 {

 timeout(&errtimer, 0); /* Refresh timer */

 switch (sig) /* Check signals */

 {

 case SIG_USER_IDENT: /* User IDENT request? */

 txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, "");

 break;

 ...

 }

 }

 ...

}

txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, "");

put_scratchp(nfp, txlen);

...

52 Chapter 2: Introduction to Protocols: SCRATCHP

(most significant byte first). The ident string is only six bytes, including a null terminator, so
one extra null character is significant, indicating that this is a wildcard search for all nodes.

Such a broadcast would be inadvisable on a network of any size, since I’d get a flood of
responses, but I’ll assume I have only two other nodes on the network, named vale and sun,
to get the responses.

Packet #2
 Packet Length:64
 Ethernet Header
 Destination: 00:C0:26:B0:0A:93 Rack2
 Source: 00:20:18:3A:ED:64 Sun Protocol Type:0xFEEB
 Packet Data:
............iden 01 02 00 00 00 00 00 00 00 00 00 0A 69 64 65 6E
t.sun........... 74 00 73 75 6E 00 00 00 00 00 00 00 00 00 00 00
.............. 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Packet #3
 Packet Length:64
 Ethernet Header
 Destination: 00:C0:26:B0:0A:93 Rack2
 Source: 00:50:04:F7:7C:CA Vale
 Protocol Type:0xFEEB
 Packet Data:
............iden 01 02 00 00 00 00 00 00 00 00 00 0B 69 64 65 6E
t.vale.......... 74 00 76 61 6C 65 00 00 00 00 00 00 00 00 00 00
.............. 00 00 00 00 00 00 00 00 00 00 00 00 00 00
The order in which these responses arrive is not significant, since both are transmitting at

more or less the same time.
The responses are received and decoded and displayed by the SCRATCHP application.

ident 'sun' address 00:20:18:3a:ed:64
ident 'vale' address 00:50:04:f7:7c:ca

In a real application, the Ident-to-address mapping would be stored (cached) for reuse
later. I will just display the addresses and discard them.

int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{

 if (rxlen) /* If packet received.. */

 {

 rxflags = sp->h.flags; /* Decode command & data areas */

 if (rxflags&FLAG_CMD || rxflags&FLAG_RESP)

 crlen = strlen((char *)sp->data) + 1;

 dlen = sp->h.dlen - crlen; /* Actual data is after command */

 if (rxflags & FLAG_ERR) /* Convert flags into signals */

 sig = SIG_ERR;

 ...

 else if (rxflags & FLAG_CMD)

Implementation 53

 sig = SIG_CMD;

 else if (rxflags & FLAG_RESP)

 sig = SIG_RESP;

 ...

 }

 if (connstate == STATE_IDLE) /* If idle state.. */

 {

 timeout(&errtimer, 0); /* Refresh timer */

 switch (sig) /* Check signals */

 {

 case SIG_CMD: /* Command signal? */

 if (!strcmp((char *)sp->data, CMD_IDENT))

 { /* IDENT cmd with my ID or null? */

 if (dlen<2 || !strncmp((char *)&sp->data[crlen], locid, dlen))

 { /* Respond to sender */

 txlen = make_scratchp(nfp, getframe_srcep(nfp), CMD_IDENT,

 FLAG_RESP, locid, strlen(locid)+1);

 }

 }

 break;

 case SIG_RESP: /* Response signal? */

 if (!strcmp((char *)sp->data, CMD_IDENT))

 { /* IDENT response? */

 printf("Ident '%s'", (char *)&sp->data[crlen]);

 if ((p=getframe_srcep(nfp)) !=0)

 {

 printf(" address ");

 pr6byt(p);

 }

 printf("\n");

 }

 break;

 ...

 }

 }

}

54 Chapter 2: Introduction to Protocols: SCRATCHP

If a packet is received (rxlen is non-zero), then a signal is raised. Because I am the com-
mand originator, I’m interested in the response signal, SIG_RESP, which simply prints the
ident name and address.

Note that the same function also handles the case where I have received a command; that
is, I am the host being queried. In this case, a SIG_CMD is raised, and I must respond by putting
my (local) ident string, locid, in the response.

It may seem strange placing the client and server code side-by-side in the same function,
and this can make the code slightly more difficult to read, since these are two mutually exclu-
sive execution strands. However, the commonality of the support code (e.g., packet composi-
tion and decomposition) and the vital necessity of keeping any modifications to the client and
server in sync does favor this approach, even at the expense of some confusion over identity
(“… so, is this a client, or server, or what?”).

Connection
The bulk of the services require a logical connection between the two machines. I can put off
the creation of state and signal tables no longer (Table 2.1).

Connection State Machine
The state changes have been marked with angle brackets, so <IDENT> indicates a change to the
IDENT state. Network signals (from received packets) are in uppercase, whereas user and sys-
tem signals (key presses and time-outs) are in lowercase. The fail signal is raised after several
successive time-outs (i.e., the retry count has been exceeded).

Table 2.1 State and signal table.

Signals States

IDLE IDENT OPEN CONNECTED CLOSE
CMD Send RESP Send to app.

RESP Check RESP
Send START
<OPEN> Send to app.

START
Send CONN
<CONNECTED>

Send CONN
<CONNECTED> Send CONN

CONN Send ERR
Send CONN
<CONNECTED> Send to app.

STOP Send ERR
Send STOP
<IDLE>

Send STOP
<IDLE> <IDLE>

ERR <IDLE>
Send STOP
<IDLE>

Send STOP
<IDLE>

timeout Resend IDENT Resend START Resend data Resend STOP

fail <IDLE>
Send ERR
<IDLE>

Send ERR
<IDLE> <IDLE>

open
Send IDENT
<IDENT>

close
Send END
<IDLE>

Send STOP
<CLOSE>

Implementation 55

Opening and Closing a Connection
To assist you in reading these tables, here’s a sample connection sequence for a client. That is,
the node requests the connection starting from the IDLE state.

1. receive open signal from user; send ident command; go to IDENT state
2. receive ident response; send start; go to OPEN state
3. receive conn; send conn; go to CONNECTED state

The client also shoulders the burden of handling connection errors. Each step is retried on
time-out.

1. no ident response; resend ident command
2. no conn response; resend start command

The sequence for the server, starting from IDLE, is much simpler.

1. receive ident command; send response; no state change
2. receive start; send conn; go to CONNECTED state

However, you must exercise a small amount of caution when assuming that the client is
responsible for all error handling. Imagine that the server’s conn response is corrupted; the
server then thinks it is connected, but the client doesn’t realize this, so it resends a start sig-
nal. Although already connected, the server must accept this error condition (the duplicate
start packet) and resend the conn.

There are two closure sequences: abrupt, in the event of an error, or slightly more graceful
under normal conditions.

The graceful closure involves the exchange of stop signals, whereas the abrupt closure is
the unilateral sending of an error packet. A potential problem with the latter is that the error
packet may go astray, then one side would think the connection was still open, while the
other thought it was closed. The only remedy for this situation is that, sooner or later, the
open side would send a data packet to the closed side and receive an error packet in response,
thus closing the connection.

The state machine software is simply a large set of nested conditionals, with entries for
each state–signal combination that requires an action.

int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{

 ...

 if (connstate == STATE_IDLE) /* If idle state.. */

 {

 timeout(&errtimer, 0); /* Refresh timer */

 switch (sig) /* Check signals */

 {

 case SIG_USER_IDENT: /* User IDENT request? */

 txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, "");

 break;

56 Chapter 2: Introduction to Protocols: SCRATCHP

 case SIG_USER_OPEN: /* User OPEN request? */

 txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, remid);

 buff_setall(&txbuff, 1); /* My distinctive SEQ value */

 newconnstate(STATE_IDENT); /* Start ident cycle */

 break;

 case SIG_CMD: /* Command signal? */

 ...

 break;

 case SIG_RESP: /* Response signal? */

 ..,

 break;

 case SIG_START: /* START signal? */

 getframe_srce(nfp, remaddr);

 buff_setall(&txbuff, 0x8001); /* My distinctive SEQ value */

 txack = sp->h.seq; /* My ack is his SEQ */

 buff_setall(&rxbuff, txack);

 remid = 0; / Clear remote ID */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, 0);

 newconnstate(STATE_CONNECTED); /* Go connected */

 break;

 case SIG_CONN: /* CONNECTED or STOP signal? */

 case SIG_STOP:

 txlen = make_scratchp(nfp, getframe_srcep(nfp), 0, FLAG_ERR, 0, 0);

 break; /* Send error */

 }

 }

 else if (connstate == STATE_IDENT) /* If in identification cycle.. */

 {

 switch (sig) /* Check signals */

 {

 case SIG_RESP: /* Got IDENT response? */

 if (!strcmp((char *)sp->data, CMD_IDENT) && dlen<=IDLEN)

 {

 if (!remid[0] || !strcmp((char *)&sp->data[crlen], remid))

 { /* Get remote addr and ID */

 getframe_srce(nfp, remaddr);

Implementation 57

 strcpy(remid, (char *)&sp->data[crlen]);

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_START, 0, 0);

 newconnstate(STATE_OPEN);

 } /* Open up the connection */

 }

 break;

 case SIG_ERR: /* Error response? */

 newconnstate(STATE_IDLE); /* Go idle */

 break;

 case SIG_TIMEOUT: /* Timeout on response? */

 n = strlen(remid) + 1; /* Resend IDENT command */

 txlen = make_scratchp(nfp, bcast, CMD_IDENT, FLAG_CMD, remid, n);

 break;

 case SIG_FAIL: /* Failed? */

 newconnstate(STATE_IDLE); /* Go idle */

 break;

 }

 }

 else if (connstate == STATE_OPEN) /* If I requested a connection.. */

 {

 switch (sig) /* Check signals */

 {

 case SIG_START:

 case SIG_CONN: /* Response OK? */

 buff_setall(&rxbuff, sp->h.seq);

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, 0);

 newconnstate(STATE_CONNECTED); /* Send connect, go connected */

 break;

 case SIG_STOP: /* Stop already? */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

 newconnstate(STATE_IDLE); /* Send stop, go idle */

 break;

 case SIG_ERR: /* Error response? */

 newconnstate(STATE_IDLE);

 break; /* Go idle */

58 Chapter 2: Introduction to Protocols: SCRATCHP

 case SIG_TIMEOUT: /* Timeout on response? */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_START, 0, 0);

 break; /* Resend request */

 case SIG_FAIL: /* Failed? */

 newconnstate(STATE_IDLE); /* Go idle */

 break;

 }

 }

 else if (connstate == STATE_CONNECTED) /* If connected.. */

 {

 switch (sig) /* Check signals */

 {

 case SIG_START: /* Duplicate START? */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, 0);

 break; /* Still connected */

 case SIG_TIMEOUT: /* Timeout on acknowledge? */

 buff_retry(&txbuff, buff_trylen(&txbuff));

 /* Rewind data O/P buffer */

 /* Fall through to normal connect.. */

 case SIG_CONN: /* If newly connected.. */

 case SIG_NULL: /* ..or still connected.. */

 ...

 break;

 case SIG_USER_CLOSE: /* User closing connection? */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

 newconnstate(STATE_CLOSE); /* Send stop command, go close */

 break;

 case SIG_STOP: /* STOP command? */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

 newconnstate(STATE_IDLE); /* Send ack, go idle */

 break;

Implementation 59

The state changes are handled by newconnstate(), which allows a simple diagnostic print-
out if the appropriate debug option is enabled. It also refreshes the time-out timer, on the
assumption that no time-out is required if the system is constantly changing state (or re-enter-
ing the same state).

 case SIG_ERR: /* Error command? */

 newconnstate(STATE_IDLE); /* Go idle */

 break;

 case SIG_FAIL: /* Application failed? */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_ERR, 0, 0);

 newconnstate(STATE_IDLE); /* Send stop command, go idle */

 break;

 }

 }

 else if (connstate == STATE_CLOSE) /* If I'm closing connection.. */

 {

 switch (sig) /* Check signals */

 {

 case SIG_STOP: /* Stop or error command? */

 case SIG_ERR:

 newconnstate(STATE_IDLE); /* Go idle */

 break;

 case SIG_TIMEOUT: /* Timeout on response? */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

 break; /* Resend stop command */

 }

 }

 return(txlen);

}

/* Do a connection state transition, refresh timer, do diagnostic printout */

void newconnstate(int state)

{

 if (state!=connstate)

 {

 if (statedebug)

 printf("connstate %s\n", connstates[state]);

60 Chapter 2: Introduction to Protocols: SCRATCHP

Maintaining a Connection
A connection supports the transfer of data between the two systems. The software must
• send and receive data, keeping in sync with the other node,
• reject duplicate data,
• resend lost data,
• avoid sending too much data to the other node, and
• avoid sending too little data in each packet.

To address the first point, imagine that both nodes have circular buffers of data, and you
are simply trying to keep the circular buffer pointers in sync. The circular buffer pointers have
32-bit values (even though the buffer size doesn’t warrant it) to allow a simple mapping onto
the sequence and acknowledgment values. What is this mapping? Imagine a data block in
traveling from one application into the transmit circular buffer, across the network, into the
receive circular buffer, and into another application.

Figure 2.9 shows the data ABCDE in transit, on the assumption that it had to be transmitted
over the network in two blocks, and a single acknowledgment was generated for both blocks.

It can be seen that the sequence pointer for the transfer is equivalent to the sender’s trial
pointer, whereas the acknowledgment value is equivalent to the sender’s in pointer. This
accounts for the following code in the routine used to create SCRATCHP packets.

 if (state != STATE_CONNECTED)

 newappstate(APP_IDLE); /* If not connected, stop app. */

 }

 connstate = state;

 errcount = 0;

 timeout(&errtimer, 0); /* Refresh timeout timer */

}

/* Make a SCRATCHP packet given command, flags and data */

int make_scratchp(GENFRAME *nfp, BYTE *dest, char *cmd, BYTE flags,

 void *data, int dlen)

{

 SCRATCHPKT *sp;

 ...

 sp = (SCRATCHPKT *)getframe_datap(&genframe);

 ...

 sp->h.seq = txbuff.trial; /* Direct seq/ack mapping.. */

 sp->h.ack = rxbuff.in; /* ..to my circ buffer pointers! */

 ...

}

Implementation 61

Figure 2.9 Data flow through a connection.

There are many ways to structure the connection code. The hardest job is to keep a clear
indication of how it reaches its decisions as to whether to accept incoming packet data and
whether to send data, acknowledgments, or both. First, I present the code for the receive deci-
sions.

Transmit

in in

out

ReceiveSEQ=0 ACK=0

in

A B C D E

in

out

in

A B C D E

out
trial

in

out

SEQ=0 ABC

ABCDE

in

A B C D E

out

in

A B C

outtrial

in

A B C D E

in

A B C D E

out

in

A B C D E

in

A B C D E

out

SEQ=3 DE

ACK=5

ABCDE

out
trial

out
trial

trialout

in

A B C D E

in

A B C D E

outout
trial

out
trial

int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{

 ...

 LWORD oldrx, rxw, acked=0;

62 Chapter 2: Introduction to Protocols: SCRATCHP

Usually, the incoming sequence value will equal the Receive buffer in value, so the incom-
ing data block can be accepted. If it is not, but it is still within the data window size, then the
block is probably a duplicate of a previous one and may be ignored (although the most likely
reason for the duplicate is that the latest acknowledgment has gone astray, so it’s best to
retransmit it). If the incoming data block is outside the data window, then it can’t be a dupli-
cate, so an error is flagged.

 ...

 /* Check received packet */

 if (rxlen > 0) /* Received packet? */

 {

 newconnstate(connstate); /* Refresh timeout timer */

 /* Rx seq shows how much of his data he thinks I've received */

 oldrx = rxbuff.in - sp->h.seq; /* Check for his repeat data */

 if (oldrx == 0) /* Accept up-to-date data */

 buff_in(&rxbuff, &sp->data[crlen], dlen);

 else if (oldrx <= WINDOWSIZE) /* Respond to repeat data.. */

 tx = 1; /* ..with forced (repeat) ack */

 else /* Reject out-of-window data */

 errstr = "invalid SEQ";

 /* Rx ack shows how much of my data he's actually received */

 acked = sp->h.ack - txbuff.out; /* Check amount acked */

 if (acked <= buff_trylen(&txbuff))

 buff_out(&txbuff, 0, (WORD)acked); /* My Tx data acked */

 else if (acked > WINDOWSIZE)

 errstr = "invalid ACK";

 rxw = rxbuff.in - txack; /* Check Rx window.. */

 if (rxw >= WINDOWSIZE/2) /* ..force Tx ack if 1/2 full */

 tx = 1;

 if (errstr) /* If error, close connection */

 {

 printf("Protocol error: %s\n", errstr);

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_ERR, 0, 0);

 newconnstate(STATE_IDLE);

 }

 }

 ...

}

Implementation 63

A similar test is applied to the incoming acknowledgment value. This must be within the
data window to be meaningful. If it is outside, it is an error condition.

The decision to transmit is contingent on having data to transmit or a pressing need to
send an acknowledgment. It is tempting to generate an acknowledgment for every incoming
packet, but this would significantly increase network traffic and the workload of the sender
and receiver. Instead, wait until the data window is half full, the sender has duplicated a
packet, or you have data to send (don’t forget that every one of the data transmissions always
has an acknowledgment field). This is hardly an optimal strategy, but it serves reasonably
well.

The Applications
Now that all the hard work of creating, maintaining, and destroying connections is done,
there is the relatively simple job of creating application code for
• ECHO (connection diagnostic),
• DIRectory of files,
• GET (file transfer: read), and
• PUT (file transfer: write).

To isolate them from the vagaries of the network, these applications preside over two cir-
cular buffers: a Receive buffer that is automatically filled by incoming network data and a
Transmit buffer that is automatically emptied into outgoing network packets. As far as the
applications are concerned, data transfers are reliable. The only error they may see is a cata-
strophic failure of the connection. All other errors are handled by the lower levels.

To also isolate the applications from the vagaries of the user, they receive predigested user
actions in the form of signals. They can also emit signals to the lower layers; for example, to
close a connection if the user requests it (Figure 2.10).

 /* Check whether a transmission is needed */

 txw = WINDOWSIZE - buff_trylen(&txbuff);/* Check Tx window space */

 trylen = minw(buff_untriedlen(&txbuff), /* ..size of data avail */

 minw(SCRATCHPDLEN, txw)); /* ..and max packet len */

 if (trylen>0 || sig==SIG_TIMEOUT || tx) /* If >0, or timeout.. */

 { /* ..or forced Tx.. */

 txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, trylen);

 buff_try(&txbuff, sp->data, trylen);/* ..do a transmission */

 txack = rxbuff.in;

 }

 if (buff_trylen(&txbuff) == 0) /* If all data acked.. */

 newconnstate(connstate); /* refresh timer (so no timeout) */

 break;

64 Chapter 2: Introduction to Protocols: SCRATCHP

Figure 2.10 Application and connection signals.

There is an inherent symmetry between the sending and receiving of files over the connec-
tion; to exploit this, I have a sender state and a receiver state, where a put command makes
the client a sender and the server a receiver, and the get command does the converse.

User
signal

User
keystrokes

do_apps()

Connection
signal

do_scratchp()

Transmit
packet

Receive
packet

Network driver

/* Do application-specific tasks, given I/P and O/P buffers, and user signal

** Return a connection signal value, 0 if no signal */

int do_apps(CBUFF *rxb, CBUFF *txb, int usersig)

{

 WORD len;

 BYTE lenb;

 int connsig=0;

 char cmd[CMDLEN+1];

 if (sigdebug && usersig && usersig>=USER_SIGS)

 printf("Signal %s ", signames[usersig]);

 connsig = usersig; /* Send signal to connection */

 if (connstate != STATE_CONNECTED) /* If not connected.. */

 ; /* Do nothing! */

 else if (appstate == APP_IDLE) /* If application is idle.. */

 {

 if (usersig == SIG_USER_DIR) /* User requested directory? */

 { /* Send command */

Implementation 65

 buff_in(txb, (BYTE *)CMD_DIR, sizeof(CMD_DIR));

 }

 else if (usersig == SIG_USER_GET) /* User 'GET' command? */

 {

 filelen = 0; /* Open file */

 if ((fhandle = fopen(filename, "wb"))==0)

 printf("Can't open file\n");

 else

 { /* Send command & name to remote */

 buff_instr(txb, CMD_GET " ");

 buff_in(txb, (BYTE *)filename, (WORD)(strlen(filename)+1));

 newappstate(APP_FILE_RECEIVER); /* Become receiver */

 }

 }

 else if (usersig == SIG_USER_PUT) /* User 'PUT' command? */

 {

 filelen = 0; /* Open file */

 if ((fhandle = fopen(filename, "rb"))==0)

 printf("Can't open file\n");

 else

 { /* Send command & name to remote */

 buff_instr(txb, CMD_PUT " ");

 buff_in(txb, (BYTE *)filename, (WORD)(strlen(filename)+1));

 newappstate(APP_FILE_SENDER); /* Become sender */

 }

 }

 else if (usersig == SIG_USER_ECHO) /* User equested echo? */

 {

 buff_in(txb, (BYTE *)CMD_ECHO, sizeof(CMD_ECHO));

 txoff = rxoff = 0; /* Send echo command */

 newappstate(APP_ECHO_CLIENT); /* Become echo client */

 }

 else if ((len=buff_strlen(rxb))>0 && len<=CMDLEN)

 {

 len++; /* Possible command string? */

 buff_out(rxb, (BYTE *)cmd, len);

 if (!strcmp(cmd, CMD_ECHO)) /* Echo command? */

 newappstate(APP_ECHO_SERVER); /* Become echo server */

 else if (!strcmp(cmd, CMD_DIR)) /* DIR command? */

 do_dir(txb); /* Send DIR O/P to buffer */

66 Chapter 2: Introduction to Protocols: SCRATCHP

 else if (!strncmp(cmd, CMD_GET, 3)) /* GET command? */

 { /* Try to open file */

 filelen = 0;

 strcpy(filename, &cmd[4]);

 if ((fhandle = fopen(filename, "rb"))!=0)

 newappstate(APP_FILE_SENDER); /* If OK, become sender */

 else /* If not, respond with null */

 buff_in(txb, (BYTE *)"\0", 1);

 }

 else if (!strncmp(cmd, CMD_PUT, 3)) /* PUT command? */

 {

 filelen = 0;

 strcpy(filename, &cmd[4]); /* Try to open file */

 fhandle = fopen(filename, "wb");

 newappstate(APP_FILE_RECEIVER); /* Become receiver */

 }

 }

 else /* Default: show data from remote */

 {

 len = buff_out(rxb, apptemp, TESTLEN);

 apptemp[len] = 0;

 printf("%s", apptemp);

 }

 }

 else if (appstate == APP_ECHO_CLIENT) /* If I'm an echo client.. */

 {

 if (usersig==SIG_USER_CLOSE) /* User closing connection? */

 newappstate(APP_IDLE);

 else

 { /* Generate echo data.. */

 if ((len = minw(buff_freelen(txb), TESTLEN)) > TESTLEN/2)

 {

 len = rand() % len; /* ..random data length */

 buff_in(&txbuff, &testdata[txoff], len);

 txoff = (txoff + len) % TESTLEN;/*..move & wrap data pointer*/

 }

 if ((len = buff_out(rxb, apptemp, TESTLEN)) > 0)

 { /* Check response data */

 if (!memcmp(apptemp, &testdata[rxoff], len))

Implementation 67

 { /* ..match with data buffer */

 rxoff = (rxoff + len) % TESTLEN;/*..move & wrap data ptr*/

 testlen += len;

 printf("%lu bytes OK \r", testlen);

 }

 else

 {

 printf("\nEcho response incorrect!\n");

 connsig = SIG_STOP; /* If error, close connection */

 }

 }

 }

 }

 else if (appstate == APP_ECHO_SERVER) /* If I'm an echo server.. */

 {

 if (usersig == SIG_USER_CLOSE) /* User closing connection? */

 newappstate(APP_IDLE);

 else if ((len = minw(buff_freelen(txb), TESTLEN))>0 &&

 (len = buff_out(rxb, apptemp, len)) > 0)

 buff_in(txb, apptemp, len); /* Else copy I/P data to O/P */

 }

 else if (appstate == APP_FILE_RECEIVER) /* If I'm receiving a file.. */

 {

 while (buff_try(rxb, &lenb, 1)) /* Get length byte */

 { /* If rest of block absent.. */

 if (buff_untriedlen(rxb) < lenb)

 {

 buff_retry(rxb, 1); /* .. push length byte back */

 break;

 }

 else

 {

 filelen += lenb;

 buff_out(rxb, 0, 1); /* Check length */

 if (lenb == 0) /* If null, end of file */

 {

 if (!fhandle || ferror(fhandle))

 printf("ERROR writing file\n");

 fclose(fhandle);

68 Chapter 2: Introduction to Protocols: SCRATCHP

Summary
I’ve looked at the elements of a protocol and how it can be slotted into the ISO standardiza-
tion framework. There are a lot of decisions to be made when creating a new protocol, and I
looked at the client–server model, with both modal and modeless clients. The logical connec-
tion is at the heart of any reliable data transfer scheme, and connection management (open-
ing, maintaining, and closing the connection) requires very careful organization.

 fhandle = 0;

 newappstate(APP_IDLE);

 }

 else /* If not null, get block */

 {

 buff_out(rxb, apptemp, (WORD)lenb);

 if (fhandle)

 fwrite(apptemp, 1, lenb, fhandle);

 }

 }

 }

 }

 else if (appstate == APP_FILE_SENDER) /* If I'm sending a file.. */

 { /* While room for another block.. */

 while (fhandle && buff_freelen(txb)>=BLOCKLEN+2)

 { /* Get block from disk */

 lenb = (BYTE)fread(apptemp, 1, BLOCKLEN, fhandle);

 filelen += lenb;

 buff_in(txb, &lenb, 1); /* Send length byte */

 buff_in(txb, apptemp, lenb); /* ..and data */

 if (lenb < BLOCKLEN) /* If end of file.. */

 { /* ..send null length */

 buff_in(txb, (BYTE *)"\0", 1);

 fclose(fhandle);

 fhandle = 0;

 newappstate(APP_IDLE);

 }

 }

 }

 return(connsig);

}

Summary 69

In my implementation of the nonstandard SCRATCHP protocol, I looked at the issues of
low-level packet storage and addressing and the strategies for buffering, byte-swapping,
transmitting, and receiving packets.

The SCRATCHP utility I developed can be used to evaluate the performance of my proto-
col or as a test bed for the development of new protocols. It has some of the features of a
“real” protocol (address resolution, reliable connection) but is implemented in a much sim-
pler fashion.

The main weakness of my implementation is the inability to handle more than one con-
nection at a time. In future, I’ll use the socket concept to group together all the information
for one connection and support multiple sockets, where each may be in a different state.

Source Files

ether3c.c 3C509 Ethernet card driver

etherne.c NE2000 Ethernet card driver

net.c Network interface functions

netutil.c Network utility functions

pktd.c Packet driver (BC only)

scratchp.c SCRATCHP protocol

serpc.c or serwin.c Serial drivers (BC or VC)

dosdef.h MS-DOS definitions (BC only)

ether.h Ethernet definitions

net.h Network driver definitions

netutil.h Utility function and general frame definitions

scratchp.h SCRATCHP protocol definitions

serpc.h Serial driver definitions (BC or VC)

win32def.h Win32 definitions (VC only)

70 Chapter 2: Introduction to Protocols: SCRATCHP

SCRATCHP Utility

Utility Test bed for a nonstandard protocol

Usage scratchp [configfile]

Reads tcplean.cfg from default directory if no file specified

Options None

Example scratchp test.cfg

Interface Single keypress with user prompts

[I] Identify remote node

[O] Open connection to remote node

[Q] Quit

When connected

[D] Directory of remote

[E] Echo data test

[G] Get file from remote

[P] Put file into remote

Config net to identify network type

ident to identification string for node

Modes Defaults to server mode unless otherwise directed

	Title
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction
	The Lean Plan
	Getting Started
	Software Introduction
	Network Hardware
	Device Drivers
	Configuration File Format
	Process Timer
	State Machines
	Buffering
	Coding Conventions

	Chapter 2: Introduction to Protocols: SCRATCHP
	Overview
	Protocol
	SCRATCHP Services
	Logical Connections
	Packet Format
	Addressing
	Protocol Identification
	Reception and Transmission
	Implementation
	Summary

	Chapter 3: Network Addressing and Debugging
	Overview
	Internetworks
	IP Addresses
	Address Resolution
	ARP Scanner
	Using ARPSCAN for Network Debugging
	Ethernet 2
	IEEE 802.3 Networks
	Summary

	Chapter 4: The Network Interface: IP and ICMP
	Overview
	TCP/IP Stack
	Internet Control Message Protocol
	Ping Implementation
	Router Implementation
	Summary

	Chapter 5: User Datagram Protocol: UDP
	Overview
	Ports and Sockets
	Datagram Format
	UDP Checksum
	UDP Utility
	Summary

	Chapter 6: Transmission Control Protocol: TCP
	Overview
	TCP Concepts
	TCP Implementation
	TCP Application — Telnet
	Telnet Implementation
	Using Telnet
	Conclusion

	Chapter 7: Hypertext Transfer Protocol: HTTP
	Overview
	HTTP GET Method
	Simple Web Server
	Introducing HTML
	State Machine Implementation
	Summary

	Chapter 8: Embedded Gateway Interface: EGI
	Overview
	Interactive Displays
	Standard CGI interface
	EGI Implementation
	Summary

	Chapter 9: Miniature Web Server Design
	Overview
	Microcontroller Software Development
	Hardware
	Development Environment
	Software Techniques
	Web Server Protocols
	Summary

	Chapter 10: TCP/IP on a PICmicro® Microcontroller
	Overview
	Peripherals
	Block Diagram
	Circuit Diagram
	Low-Level Software
	SLIP and IP Drivers
	ICMP
	TCP
	Summary

	Chapter 11: PWEB: Miniature Web Server for the PICmicro®
	Overview
	Web Server
	ROM File System
	Using the PWEB Server
	Dynamic Content
	Dynamic Web Pages
	Summary

	Chapter 12: ChipWeb — Miniature Ethernet Web Server
	Overview
	Hardware
	Ethernet Driver
	LCD Driver
	Other Drivers
	Protocols
	Protocol Debugging
	User Interface
	Configuration
	Conclusion

	Chapter 13: Point-to-Point Protocol: PPP
	Overview
	Design of PPP
	Protocol Components
	Sample PPP Negotiation
	PPP Implementation
	Summary

	Chapter 14: UDP Clients, Servers, and Fast Data Transfer
	Overview
	Client–Server Networking
	Peer-to-Peer Networking
	Beyond the Web Server
	Buffer Enhancements
	IP and ICMP Processing
	UDP Servers
	UDP Time Client
	High-Speed Data Transfer
	Hardware
	Software
	Summary

	Chapter 15: Dynamic Host Configuration Protocol: DHCP
	Overview
	DHCP Methodology
	Sample Transaction
	DHCP Implementation
	Summary

	Chapter 16: TCP Clients, SMTP, and POP3 Email
	Overview
	TCP Client Techniques
	TCP Client Implementation
	SMTP Email Client
	POP3 Email Client
	Summary

	Appendix A: Configuration Notes
	Network Configuration
	Addressing
	Testing the Network
	Windows SLIP Configuration

	Appendix B: Resources
	Publications
	Hardware
	Software

	Appendix C: Software on the CD-ROM
	ARPSCAN
	DATAGRAM
	NETMON
	PICmicro® Software
	PING
	ROUTER
	SCRATCHP
	TELNET
	WEBROM
	WEBSERVE
	WEB_EGI

	Appendix D: PICmicro®-Specific Issues
	Compiler Support

	Function Index
	Stucture Index
	Index
	What’s on the CD-ROM?

